
CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 1 of 16

The following question involves regular expressions. For this question you must restrict yourself to the
basic regular expression operations covered in class and on homework assignments: rs , r|s , r* , r+ ,
r?, character classes like [a-cxy] and [^aeiou], abbreviations name=regexp like as d=[0-9], and
parenthesized regular expressions. No additional operations that might be found in the “regexp”
packages in various Unix programs, scanner generators like JFlex, or programming language libraries are
allowed.

Question 1. (12 points, 6 points each) The question that was dropped from the midterm! For each of
the following, give a regular expression that generates the set of strings described. The set of strings
generated by each regular expression should include the empty string as a possible result.

There are many possible solutions. Here are a few possibilities for each part. Also, note that
expressions like (b|c)* can also be written as [bc]*.

(a) Strings over the alphabet {a,b,c} where the first a appears somewhere before the first b if the string
contains at least one a and one b.

 (a|c)* | (b|c)* | c*a(a|c)*b(a|b|c)*

 (b|c)* | c*a(a|b|c)*

(b) Strings over the alphabet {a,b,c} that contain an even number of a’s if they contain any a’s.

 (b|c)* | ((b|c)*a(b|c)*a(b|c)*)*

 (a(b|c)*a | b | c)*

 ((b|c)*a(b|c)*a)* (b|c)*

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 2 of 16

Question 2. (15 points) A bit of x86-64 coding. Here is a small C function that replaces a value in an
integer array and returns the old value that was replaced.

// Store val in arr[idx] and return the value previously stored
// at that location.
int update(int arr[], int idx, int val) {
 int oldVal;
 oldVal = arr[idx];
 arr[idx] = val;
 return oldVal;
}

On the next page, translate this function into x86-64 assembly language. You should use the standard
x86-64 runtime conventions for parameter passing, register usage, and so forth that we used in the
MiniJava project, including using %rbp as a stack frame pointer in the function prologue code. Note
that this is simple C code, not a Java method, so there is no this pointer or method vtable involved.

Reference and ground rules for x86-64 code, (same as for the MiniJava project and other x86-64 code):
• All values, including pointers and ints, are 64 bits (8 bytes) each, as in MiniJava
• You must use the Linux/gcc assembly language, and must follow the x86-64 function call,

register, and stack frame conventions:
o Argument registers: %rdi, %rsi, %rdx, %rcx, %r8, %r9 in that order
o Called function must save and restore %rbx, %rbp, and %r12-%r15 if these are

used in the function
o Function result returned in %rax
o %rsp must be aligned on a 16-byte boundary when a call instruction is executed
o %rbp must be used as the base pointer (frame pointer) register for this question

• The full form of a memory address is constant(%rbase,%rindex,scalefactor), which references
memory address %rbase+%rindex*scalefactor+constant. scalefactor must be 0, 2, 4, or 8.

• Your x86-64 code must implement all of the statements in the original function including
allocating space and using the local variable oldVal. You may not rewrite the code into a
different form that produces equivalent results (i.e., restructuring or reordering the code or
eliminating function calls). Other than that, you can use any reasonable x86-64 code that
follows the standard function call and register conventions – you do not need to mimic the
code produced by your MiniJava compiler.

• Please include brief comments in your code to help us understand what the code is supposed to
be doing (which will help us assign partial credit if it doesn’t do exactly what you intended.)

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 3 of 16

Question 2. (cont.) Write your x86-64 translation of function update below. Remember to read and
follow the above ground rules carefully, including managing registers properly and using the correct
argument registers for function calls, and creating a local stack frame to hold oldVal. Your code
should include a translation of all of the code in the original function. Brief comments are appreciated.
Original code repeated below for convenience:

int update(int arr[], int idx, int val) {
 int oldVal;
 oldVal = arr[idx];
 arr[idx] = val;
 return oldVal;
}

Argument registers: %rdi = arr, %rsi = idx, %rdx = val

There are obviously many possible solutions. Here are two. Clever x86-64 addressing mode version:

update: pushq %rbp # prologue – save rbp
 movq %rsp,%rbp
 subq $16,%rsp # allocate stack
 movq 0(%rdi,%rsi,8),%rax # load arr[idx]
 movq %rax,-8(%rbp) # store arr[idx] in oldVal*
 movq %rdx,0(%rdi,%rsi,8) # store val in arr[idx]
 movq -8(%rbp),%rax # return oldVal
 movq %rbp,%rsp # free stack & restore regs
 popq %rbp # (could also use leave)
 ret # return

Simpler pointer addressing version:

update: pushq %rbp # prologue – save rbp
 movq %rsp,%rbp
 subq $16,%rsp # allocate stack
 shlq %rsi,3 # rsi = idx*8
 addq %rsi,%rdi # rdi = address of arr[idx]
 movq 0(%rdi),%rax # load arr[idx]
 movq %rax,-8(%rbp) # store arr[idx] in oldVal*
 movq %rdx,0(%rdi) # store val in arr[idx]
 movq -8(%rbp),%rax # return oldVal
 movq %rbp,%rsp # free stack & restore regs
 popq %rbp # (could also use leave)
 ret # return

*Note: the load arr[idx] followed by the store in oldVal requires two instructions. x86-64 does not
support two memory addresses in a single mov instruction, so it cannot be done with a single movq.
The problem specification did require storing the original arr[idx] value in the local variable oldVal.

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 4 of 16

Question 3. (24 points) Compiler hacking. As usually is the case once we’ve finished the MiniJava
compiler project, one of our customers comes along with a request for a new feature or language
addition. This time our customer has a lot of code that used the Java || conditional or operator, and we
would like to add that to MiniJava for this problem. A conditional or expression is written as

 e1 || e2

The meaning of this expression is first evaluate e1. If e1 evaluates to true, the entire e1 || e2
expression is true, and e2 is not evaluated. If e1 evaluates to false, then e2 is evaluated, and the value
of e2 is the value of the e1 || e2 expression.

Answer the questions below about how this new operator would be added to a MiniJava compiler.
There is likely way more space than you will need for some of the answers. The full MiniJava grammar is
attached at the end of the exam if you need to refer to it.

(a) (2 points) What new lexical tokens, if any, need to be added to the scanner and parser of our
MiniJava compiler to add this new || operator to the original MiniJava language? Just describe any
necessary changes and new token name(s) needed. You don’t need to give JFlex or CUP specifications or
code in this part of the question, but you will need to use any token name(s) you write here in a later
part of this question.

One new token needed: OR for conditional or || operator

(Note: this must be a single token, not a sequence of two |operators.)

(continued on next page)

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 5 of 16

Question 3. (cont.) (b) (6 points) Complete the following new AST class to define an AST node type for
this new || conditional or operator. You only need to define instance variables and the constructor.
Assume that all appropriate package and import declarations are supplied, and don’t worry about visitor
code.

(Hint: recall that the AST package in MiniJava contains the following key classes: ASTNode,
Exp extends ASTNode, and Statement extends ASTNode. Also remember that each AST
node constructor has a Location parameter, and the supplied super(pos); statement at the
beginning of the constructor below is used to properly initialize the superclass with this information.)

public class Or extends Exp {
 // add any needed instance variables below

 Exp e1, e2;

 // constructor – add parameters and method body below

 public Or (Exp e1, Exp e2, Location pos_){

 super(pos); // initialize location information in superclass

 this.e1 = e1;

 this.e2 = e2;

 }
}
(continued on next page)

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 6 of 16

Question 3. (cont.) (c) (5 points) Complete the CUP specification below to define a production for this
new || conditional or operator, including associated semantic action(s) needed to parse the new
expression and create an appropriate AST node (as defined in part (b) above). You should use any new
lexical tokens defined in your answer to part (a) as needed. Use reasonable names for any other lexical
tokens that already would exist in the compiler scanner and parser if you need them. We have added
additional code to the parser rule for Expression below so the CUP specification for the || operator
can be written as an independent grammar rule with separate semantic actions.

Hint: recall that the Location of an item foo in a CUP grammar production can be referenced as
fooxleft.

Expression ::= ...
 | OrExp:e {: RESULT = e; :}
 ...
 ;
OrExp ::=

 Exp:e1 OR:e Exp:e2

 {: RESULT = new Or(e1, e2, exleft); :}

 // Note: it would also be ok to use the Location of any
 // component in the grammar rule for the Location of the
 // expression

(d) (4 points) Describe the checks that would be needed in the semantics/type-checking part of the
compiler to verify that a program containing this new operator is legal. You do not need to give code for
a visitor method or anything like that – just describe what language rules (if any) need to be checked for
this new operator to verify it is used correctly.

Verify that e1 and e2 have type Boolean

Designate the result type of the new Or expression node as Boolean (needed to check expressions
that use this new operator)

(continued on next page)

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 7 of 16

Question 3. (cont.) (e) (7 points) Describe the x86-64 code shape for this new || conditional or
operator that would be generated by a MiniJava compiler. Your answer should be similar in format to
the descriptions we used in class for other language constructs. If needed, you should assume that the
code generated for an expression will leave the value of that expression in %rax, as in our MiniJava
project.

There are multiple ways to implement logical operators like this || conditional or, depending on
whether it is being used to control execution in a loop or conditional statement or to produce a storable
Boolean value. For this question your code shape should describe how to produce the binary value 1
(true) if e1 || e2 is true and produce the binary value 0 (false) if it is not. You may assume that the code
shape for expressions e1 and e2 will similarly produce values 1 (true) or 0 (false) and do not have to do
anything additional to make that happen.

Use Linux/gcc x86-64 instructions and assembler syntax when needed. If you need to make any
additional assumptions about code generated by the rest of the compiler you should state them.

Hint: be sure that your code follows the described operation and semantics of the new || operator
precisely, including evaluating e2 only when needed.

This is a very simple version and there are clearly other ways to do it. Note that the generated code
for e2 will only be executed if the generated code for e1 produces 0 (false) during execution, as
required.

 Visit e1 to generate code. Leaves 0/1 in %rax

 cmpq $1,%rax # see if result is 1 (true)

 jeq done # if result = 1, then finished

 Visit e2 to generate code. Leaves result 0/1 in %rax, which is now the result of e1||e2

done:

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 8 of 16

The next two questions concern the following control flow graph for a strange program that manipulates
C-style pointers and values:

The statements in this program include those that allocate and free memory. We would like to ensure
that all allocated memory is free’d before the end of execution. We want to use a dataflow analysis to
discover if there may be a memory leak by keeping track of which variables currently point to allocated
heap space at various points in the program.

For this problem, assume that our language two types: pointers and scalars. The language has the
following operations:

• x = malloc() – allocates a block of memory and assigns its location to x (x must be pointer type)
• free(x) – free allocated memory referenced by x (x must be pointer type)
• *x – dereference x to access the scalar value at the address whose value is contained in x

(x must be pointer type)
• x = y – ordinary assignment (x and y must be scalars)
• x = y + z – compute sum y + z and assign to x (x, y, and z must be scalars)
• print(x) – print value of x (x must be a scalar)

This program clearly has other bugs, including reading uninitialized heap data and possible double-free
errors. You should ignore these other potential memory errors and use the dataflow analysis to locate
potential memory leaks only (heap memory allocated but never freed).

(continued on next page)

a = malloc()
b = malloc()
c = *a + *b

d = *a
free(a)

d = *a
free(b)
free(a)
b=malloc()

B0

B1
B2 a = malloc()

free(b)
d = *a

B3

d = *b + c
free(b)
print(d)

B4

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 9 of 16

Question 4. (18 points) Dataflow analysis – memory leaks. We would like to use dataflow analysis to
discover which variables point to allocated heap memory at different points in the program. To do that,
we define the following sets for each basic block b:

 IN(b) = the set of variables that are known to point to allocated heap memory (malloc) on entry to
block b

 OUT(b) = the set of variables that are known to point to allocated heap memory (malloc) on exit
from block b

 GEN(b) = the set of variables that are assigned a pointer to a newly allocated heap memory location
(i.e., malloc) inside block b that is not later freed by the end of block b

 KILL(b) = the set of all variables that are freed in block b and not later set to point to a newly
allocated block of storage in block b by a later use of malloc

The GEN(b) and KILL(b) sets for each block can be computed once based on the static contents of the
statements in block b.

The dataflow equation relating these sets are

 IN(b) = ⋃x∈pred(b) OUT(x)	

	 OUT(b) = GEN(b) ⋃ (IN(b) – KILL(b))	

(a) (15 points) Complete the following table using iterative dataflow analysis to identify the variables in
the IN and OUT sets for each block in the above flowgraph that are known to point to allocated-but-not
yet-freed heap data. You should first fill in the GEN and KILL sets for each block, then iteratively solve for
IN and OUT. You can choose whichever direction you wish (forward or backward) to solve the
equations. The table should only contain pointer variables (e.g., a and b).

 GEN KILL IN OUT IN OUT IN OUT

B0 a, b -- -- a, b a a, b a a, b

B1 b a a, b b a, b b a, b b

B2 -- a a, b b a, b b a, b b

B3 a b b a b a b a

B4 -- b a, b a a, b a a, b a

(b) (3 points) Based on this analysis, is there heap-allocated memory that might not be freed by the end
of the program? If so, which variable(s) reference this allocated memory and how do you know this
data might not be properly freed?

Yes. Variable a is in the OUT set of block 4, which is the end of the flowgraph. That means a has been
allocated but not freed previously when the program terminates.

Sam
e

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 10 of 16

Question 5. (18 points) Dominators and SSA. Here are the basic definitions of dominators and related
concepts we have seen previously in class:

• Every control flow graph has a unique start node s.
• Node x dominates node y if every path from s to y must go through x.

- A node x dominates itself.
• A node x strictly dominates node y if x dominates y and x ≠ y.
• The dominator set of a node x is the set of nodes dominated by x.

- | Dom(x) | ≥ 1
- (note: sometimes the definition of Dom(x) is given as the set of all nodes that dominate

x. For SSA it is more convenient to keep track of the set of nodes that x dominates.)
• An immediate dominator of a node y, idom(y), has the following properties:

- idom(y) strictly dominates y (i.e., dominates y but is different from y)
- idom(y) does not dominate any other strict dominator of y

• The dominator tree of a control flow graph is a tree where there is an edge from every node x
to its immediate dominator idom(x).

• The dominance frontier of a node x is the set of all nodes w such that
- x dominates a predecessor of w, but
- x does not strictly dominate w

(a) (8 points) Using the same control flow graph from the previous problem, complete the following
table. List for each node: the node(s) that it dominates, successor nodes to the dominated nodes, and
the nodes that are in its dominance frontier (if any):

Node Nodes dominated by
this node

Successor(s) to nodes dominated
by this node

Dominance Frontier of
this node

B0 B0, B1, B2, B3, B4 B0, B1, B2, B3, B4 B0

B1 B1 B1, B4 B1, B4

B2 B2, B3 B0, B3, B4 B0, B4

B3 B3 B0, B4 B0, B4

B4 B4 --- ---

 a = malloc()

b = malloc()
c = *a + *b

d = *a
free(a)

d = *a
free(b)
free(a)
b=malloc()

B0

B1
B2 a = malloc()

free(b)
d = *a

B3

d = *b + c
free(b)
print(d)

B4

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 11 of 16

Question 5 (cont.) (b) (10 points) Now redraw the flowgraph in SSA
(static single-assignment) form. You need to insert all Φ-functions
that are required by the dominance frontier criteria, even if some of
the variables created by those functions are not used later. Once that
is done, add appropriate version numbers to all variables that are
assigned in the flowgraph. You do not need to trace the steps of any
particular algorithm to place the Φ-functions as long as you add them
to the flowgraph in appropriate places. Answers that have a couple of
extraneous Φ-functions will receive appropriate partial credit, but
answers that, for example, use a maximal-SSA strategy of placing Φ-
functions for all variables at the beginning of every block will not be
looked on with favor.

a = malloc()
b = malloc()
c = *a + *b

d = *a
free(a)

d = *a
free(b)
free(a)
b=malloc()

B0

B1
B2 a = malloc()

free(b)
d = *a

B3

d = *b + c
free(b)
print(d)

B4

a1 = Φ(a0,a3)
b1 = Φ(b0,b2)
c1 = Φ(c0,c2)
d1 = Φ (d0,d5)
a2 = malloc()
b2 = malloc()
c2 = *a2 + *b2

d4 = *a2
free(a2)

b3 = Φ (b2,b4)
d2 = Φ (d1,d3)
d3 = *a2
free(b3)
free(a2)
b4 = malloc()

B0

B1
B2 a3 = malloc()

free(b2)
d5 = *a3

B3

a4 = Φ(a2,a3)
b5 = Φ (b2,b4)
d6 = Φ (d3,d5)
d7 = *b5 + c2
free(b5)
print(d7)

B4

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 12 of 16

The next two questions concern register allocation and instructions scheduling. For both of these
questions, assume that we’re using the same hypothetical machine that was presented in lecture and in
the textbook examples for list scheduling.

The instructions on this example machine are assumed to take the following numbers of cycles each:

Operation Cycles
LOAD 3
STORE 3
ADD 1

MULT 2
SHIFT 1

Our instruction selection algorithm has been modified so it does not re-use registers, but instead just
creates temporaries and leaves register selection for later. Here is a sequence of instructions produced
by the code generator:

 a. LOAD t1 <- x // t1 = x
 b. LOAD t2 <- y // t2 = y
 c. MULT t3 <- t2,5 // t3 = y * 5
 d. LOAD t4 <- z // t4 = z
 e. MULT t5 <- t3,t4 // t5 = y * 5 * z
 f. LOAD t6 <- w // t6 = w
 g. ADD t7 <- t5, t6 // t7 = (y * 5 * z) + w
 h. MULT t8 <- t1,t7 // t8 = x * ((y * 5 * z) + w)
 i. STORE n <- t8 // n = x * ((y * 5 * z) + w)

In a real compiler we would first use list scheduling to pick a (possibly) better order for the instructions,
then use graph coloring to assign temporaries (t1-t8) to actual registers. But for this exam we’re going
to ask those two questions separately so the answers don’t depend on each other, which will make it
much easier to assign credit fairly (J).

Answer the questions about this sequence of code on the next pages.

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 13 of 16

Question 6. (16 points) Forward list scheduling. (a) (8 points) Given the original sequence of instructions
on the previous page, draw the precedence graph showing the dependencies between these
instructions. Label each node (instruction) in the graph with the letter identifying the instruction (a-i)
and its latency – the number of cycles between the beginning of that instruction and the end of the
graph on the shortest possible path that respects the dependencies.

(continued on next page)

Operation Cycles

LOAD 3

STORE 3

ADD 1

MULT 2

SHIFT 1

a. LOAD t1 <- x
b. LOAD t2 <- y
c. MULT t3 <- t2,5
d. LOAD t4 <- z
e. MULT t5 <- t3,t4
f. LOAD t6 <- w
g. ADD t7 <- t5, t6
h. MULT t8 <- t1,t7
i. STORE n <- t8

i

h

ag

e

dc

f

3

10

9

11

13b

5

86

8

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 14 of 16

Question 6. (cont) (b) (8 points) Rewrite the instructions in the order they would be chosen by forward
list scheduling. If there is a tie at any step when picking the best instruction to schedule next, pick one
of them arbitrarily. Label each instruction with its letter and instruction operation (LOAD, ADD, etc.)
from the original sequence above and the cycle number on which it begins execution (you do not need
to write all of the instruction operands, just the letter and opcode). The first instruction begins on
cycle 1. You do not need to show your bookkeeping or trace the algorithm as done in class, although if
you leave these clues about what you did, it could be helpful if we need to figure out how to assign
partial credit.

 1. b LOAD
 2. d LOAD
 3. f LOAD
 4. c MULT
 5. a LOAD
 6. e MULT
 7. ---
 8. g ADD
 9. h MULT
 10. ---
 11. i STORE

This is the unique correct solution. There are no ties to be broken arbitrarily at any step in the
algorithm.

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 15 of 16

Question 7. (15 points) Register allocation/graph coloring.

(a) (8 points) Draw the interference graph for the temporary variables (t1-t8) in the code on the
previous page (repeated here for convenience). You should assume that the code is executed in the
sequence given and not rearranged before assigning registers.

(b) (7 points) Give an assignment of groups of temporary variables to registers that uses the minimum
number of registers possible based on the information in the interference graph. Use R1, R2, R3, … for
the register names.

There are several possible assignments that require the minimum of 3 registers. Here is one.

 R1: t1, t8

 R2: t2, t3, t5, t7

 R3: t4, t6

a. LOAD t1 <- x
b. LOAD t2 <- y
c. MULT t3 <- t2,5
d. LOAD t4 <- z
e. MULT t5 <- t3,t4
f. LOAD t6 <- w
g. ADD t7 <- t5, t6
h. MULT t8 <- t1,t7
i. STORE n <- t8

t1

t2 t3

t4

t5

t8

t6 t7

CSE 401/M501 23au Final Exam 12/12/23 Sample Solution

CSE 401/M501 23au Final Exam, December 12, 2023 Page 16 of 16

Question 8. (2 free points – all answers get the free points)

Draw a picture of something you are planning to do over the break!
– or –

Draw a picture of something you think one or more of your TAs will do over the break!

Here’s one that was fairly popular:

Have a great break and best wishes for the holidays! We’ll see you back here in

the winter!
The CSE 401/M501 staff

