
CSE	401/M501	21au	Final	Exam	

December	14,	2021	

Name ___

There are 6 questions worth a total of 110 points. Please budget your time so you get to all of the
questions. Keep your answers brief and to the point.

Three blank pages are provided at the end of the exam if you need extra space for answers or scratch
work. If you write any answers on those pages, please be sure to indicate on the original question page
that your answers are written on those extra pages and which one, and label the answers on the extra
page.

A copy of the MiniJava grammar is attached at the very end of the exam for reference if you need it.

This exam is closed book, closed notes, closed electronics, closed neighbors, open mind, ..., however you
may have two 5x8 notecards with whatever hand-written information you wish written on both sides.

Please wait to turn the page until everyone has their exam and you have been told to begin.

If you have questions during the exam, raise your hand and someone will come to you.

Legibility is a plus, as is showing your work. We can’t read your mind, but we’ll do our best to figure out
the meaning of what you write.

1 / 20

2 / 20

3 / 15

4 / 20

5 / 20

6 / 15

Total / 110

 CSE 401/M501 21au Final Exam 12/14/21

 Page 2 of 16

Question 1. (20 points) A bit of x86-64 coding. Here is a small C function that has two integer
parameters and returns a value computed from those parameters. Function rand() is an external
function that returns some random integer.

extern int rand();

// return abs(a*some_random_int + b)
int rando(int a, int b) {
 int ans;
 ans = a*rand()+b;
 if (ans < 0) {
 ans = -ans;
 }
 return ans;
}

On the next page, translate this function into x86-64 assembly language. You should use the standard
x86-64 runtime conventions for parameter passing, register usage, and so forth that we used in the
MiniJava project, including using %rbp as a stack frame pointer in the function prologue code. Note
that this is simple C code, not a Java method, so there is no this pointer or method vtable involved.

Reference and ground rules for x86-64 code, (same as for the MiniJava project and other x86-64 code):
• All values, including pointers and ints, are 64 bits (8 bytes) each, as in MiniJava
• You must use the Linux/gcc assembly language, and must follow the x86-64 function call,

register, and stack frame conventions:
o Argument registers: %rdi, %rsi, %rdx, %rcx, %r8, %r9 in that order
o Called function must save and restore %rbx, %rbp, and %r12-%r15 if these are

used in the function
o Function result returned in %rax
o %rsp must be aligned on a 16-byte boundary when a call instruction is executed
o %rbp must be used as the base pointer (frame pointer) register for this question

• The full form of a memory address is constant(%rbase,%rindex,scalefactor), which references
memory address %rbase+%rindex*scalefactor+constant. scalefactor must be 0, 2, 4, or 8.

• Your x86-64 code must implement all of the statements in the original function. You may not
rewrite the code into a different form that produces equivalent results (i.e., restructuring or
reordering the code or eliminating function calls). You should allocate space for the local
variable ans and generate appropriate load and store instructions when needed so that the
copy in memory always has the correct current value of that variable at the end of the x86-64
code for each statement in the original C function. (And, of course, you can allocate additional
space in the stack frame as needed to store other data.). Other than that, you can use any
reasonable x86-64 code that follows the standard function call and register conventions – you
do not need to mimic the code produced by your MiniJava compiler.

• Please include brief comments in your code to help us understand what the code is supposed to
be doing (which will help us assign partial credit if it doesn’t do exactly what you intended.)

 CSE 401/M501 21au Final Exam 12/14/21

 Page 3 of 16

Question 1. (cont.) Write your x86-64 translation of function rando below. Remember to read and
follow the above ground rules carefully. Brief comments are appreciated. Original code repeated below
for convenience:

// return abs(a*some_random_int + b)
int rando(int a, int b) {
 int ans;
 ans = a*rand()+b;
 if (ans < 0) {
 ans = -ans;
 }
 return ans;
}

 CSE 401/M501 21au Final Exam 12/14/21

 Page 4 of 16

Question 2. (20 points) Compiler hacking. As is often the case, now that our MiniJava compiler is done,
one of our customers would like us to add a new “feature”. This customer learned Ruby as a youth and
really likes Ruby’s ability to turn any statement into a conditional (if) statement. In Ruby, a statement S
can often be followed by “if condition”, in which case the condition is evaluated first and the
statement S is only executed if the condition is true.

Our customer would like to add a similar do-if statement to MiniJava. An example of the new
statement is the following:

 do max = x; if x > max

This new statement has exactly the same meaning and semantics as this ordinary Java if statement
with no else part: if (x > max) max = x; . Notice that the ; (semicolon) in the code examples
here is part of the assignment statement grammar rule, not part of either the new do-if statement or
the traditional Java if statement. Also, even though the keyword do is used here, this is not a loop,
just an unusual conditional statement.

Answer the questions below about how this new do-if statement would be added to a MiniJava
compiler as a new statement (i.e., a new regular statement added to the language along with the
previously existing statements in MiniJava). There is likely way more space than you will need for some
of the answers. The full MiniJava grammar is attached at the end of the exam if you need to refer to it.

(a) (2 points) What new lexical tokens, if any, need to be added to the scanner and parser of our
MiniJava compiler to add this new do-if statement to the original MiniJava language? Just describe
any new token name(s) needed. If any other changes to the lexical tokens in MiniJava are needed, you
should also describe those changes here. You don’t need to give JFlex or CUP specifications or code.

(continued on next page)

 CSE 401/M501 21au Final Exam 12/14/21

 Page 5 of 16

Question 2. (cont.) (b) (4 points). Give the context-free grammar rule or rules needed to add this new
do-if statement to the MiniJava grammar. You only need to give the additions and changes needed to
the MiniJava grammar. You do not need to write CUP specifications or other MiniJava code, and do not
need to worry about any possible shift-reduce or reduce-reduce conflicts these changes might introduce
into the existing MiniJava grammar. (Recall that there is a copy of the MiniJava grammar at the end of
the exam that you can refer to.)

(c) (4 points) Describe the changes or additions that need to be made to the MiniJava Abstract Syntax
Tree (AST) classes (i.e., AST nodes) to add this new do-if statement to the compiler. You should not
include specific Java code or AST class definitions, but you should precisely describe the new or changed
node types and their contents so that it is obvious how they would be implemented.

(continued on next page)

 CSE 401/M501 21au Final Exam 12/14/21

 Page 6 of 16

Question 2. (cont.) (d) (4 points) What additions or changes need to be made to the static semantics /
type checking part of the compiler to verify that a new do-if statement is correct? Again, you don’t
need to provide specific visitor method code or anything like that – just describe what type or other
information needs to be produced or checked for this new statement.

(e) (6 points) Describe the x86-64 code shape for this new do-if statement that would be generated
by a MiniJava compiler. Your answer should be similar in format to the descriptions we used in class for
other language constructs.

Use Linux/gcc x86-64 instructions and assembler syntax when needed. However, remember that the
question is asking for the code shape for this statement, so using things like Jfalse, for example, to
indicate control flow, instead of pure x86-64 machine instructions, is fine as long as the meaning is clear.
If you need to make any additional assumptions about code generated by the rest of the compiler you
should state them.

 CSE 401/M501 21au Final Exam 12/14/21

 Page 7 of 16

Question 3. (15 points) A little optimization. For this question we’d like to perform local constant
propagation and folding (compile-time arithmetic), plus copy propagation (reuse values that are already
present in another temporary ti when possible), strength reduction (replace expensive operations like *
with cheaper ones when possible), common subexpression elimination, and dead code elimination.

The left column of the table below gives the three-address code generated for this statement:
a[i] = a[i]+a[i-1]

(a) Fill in the middle column with the code from the left column after any changes due to constant
propagation and folding, copy propagation, strength reduction, and common subexpression elimination,
but before any dead code elimination. (Notes: memory reference addresses can use a register (ti or fp)
and a constant offset only – they cannot be more complex. Also note that the array a is assumed to be
a local value stored in the current stack frame, as is possible in C or C++ code, instead of being a pointer
to an array allocated elsewhere in memory as in Java.)

(b) In the last column, put an X under “deleted” if the statement would be deleted by dead code
elimination after performing the constant propagation/folding, copy, and strength reduction
optimizations in part (a).

 Original Code After constant prop./folding & copy prop., strength
reduction, and CSE (copy original code if no change)

“X” if deleted as
dead code

a t1 = *(fp + ioffset) // i

b t2 = t1 * 8 // i*8

c t3 = fp + t2

d t4 = *(t3 + aoffset) // a[i]

e t5 = *(fp + ioffset) // i

f t6 = t5 * 8 // i*8

g t7 = t6 - 8 // (i-1)*8

h t8 = fp + t7

i t9 = *(t8 + aoffset) // a[i-1]

j t10 = t4 + t9 // a[i] + a[i-1]

k t11 = *(fp + ioffset)

l t12 = t11 * 8

m t13 = fp + t12

n *(t13 + aoffset) = t10 // a[i] = …

 CSE 401/M501 21au Final Exam 12/14/21

 Page 8 of 16

The next two questions concern the following rather unusual control flow graph:

Question 4. (20 points) Dataflow – live variables. Recall from lecture that live-variable analysis
determines for each point p in a program which variables are live at that point. A live variable v at point
p is one where there exists a path from point p to another point q where v is used without v being
redefined anywhere along that path. The sets for the live variable dataflow problem are:

 use[b] = variables used in block b before any definition
 def[b] = variables defined in block b and not later killed in b
 in[b] = variables live on entry to block b
 out[b] = variables live on exit from block b

The dataflow equations for live variables are

 in[b] = use[b] ∪ (out[b] – def[b])
 out[b] = ∪ s ∈ succ[b] in[s]

On the next page, calculate the use and def sets for each block, then solve for the in and out sets of each
block. A table is provided with room for the use and def sets for each block and up to three iterations of
the main algorithm to solve for the in and out sets. If the algorithm does not converge after three
iterations, use additional space below the table for additional iterations.

Then remember to answer the undefined variable question at the bottom of the page.

Hint: remember that live-variables is a backwards dataflow problem, so the algorithm should update the
sets from the end of the flowgraph towards the beginning to reduce the total amount of work needed.

a = 1
b = a + 1

b = b + 1
c = c + 1

print(a)
print(b)
print(c)

a = a + b
c = a + 1

B1

B2 B3

B4

 CSE 401/M501 21au Final Exam 12/14/21

 Page 9 of 16

Question 4. (cont). Graph and definitions repeated from previous page:

 use[b] = variables used in block b before any definition
 def[b] = variables defined in block b and not later killed in b
 in[b] = variables live on entry to block b
 out[b] = variables live on exit from block b

 in[b] = use[b] ∪ (out[b] – def[b])
 out[b] = ∪ s ∈ succ[b] in[s]

(a) (18 points) Write the results of calculations for live variables in the chart below. Use the rest of the
page for extra space if needed, then remember to answer part (b) at the bottom! (Note: you should
write down the details of the individual passes so if there is an error in the final result we will be better
able to evaluate what happened.)

Block use def out (1) in (1) out (2) in (2) out (3) in (3)

B4

B3

B2

B1

(b) (2 points) One use of live variable analysis is to detect potential use of uninitialized variables in a
program. Are there any potentially uninitialized variables in this flowgraph, and if so which ones, where,
and why? (i.e., justify your answer using the information from the analysis you have done above.)

a = 1
b = a + 1

b = b + 1
c = c + 1

print(a)
print(b)
print(c)

a = a + b
c = a + 1

B1

B2 B3

B4

 CSE 401/M501 21au Final Exam 12/14/21

 Page 10 of 16

Question 5. (20 points) Dominators and SSA. Here are the basic definitions of dominators and related
concepts we have seen previously in class:

• Every control flow graph has a unique start node s.
• Node x dominates node y if every path from s to y must go through x.

- A node x dominates itself.
• A node x strictly dominates node y if x dominates y and x ≠ y.
• The dominator set of a node y is the set of all nodes x that dominate y.
• An immediate dominator of a node y, idom(y), has the following properties:

- idom(y) strictly dominates y (i.e., dominates y but is different from y)
- idom(y) does not dominate any other strict dominator of y

 A node might not have an immediate dominator. A node has at most one immediate
dominator.

• The dominator tree of a control flow graph is a tree where there is an edge from every node x
to its immediate dominator idom(x).

• The dominance frontier of a node x is the set of all nodes w such that
- x dominates a predecessor of w, but
- x does not strictly dominate w

(a) (8 points) Using the same control flow graph from the previous problem, complete the following
table. List for each node: the node(s) that it strictly dominates and the nodes that are in its dominance
frontier (if any):

Node Strictly dominates Dominance Frontier

B1

B2

B3

B4

a = 1
b = a + 1

b = b + 1
c = c + 1

print(a)
print(b)
print(c)

a = a + b
c = a + 1

B1

B2 B3

B4

 CSE 401/M501 21au Final Exam 12/14/21

 Page 11 of 16

(b) (12 points) Now redraw the flowgraph in SSA (static single-
assignment) form. You need to insert all Φ-functions that are required
by the dominance frontier criteria, even if some of the variables created
by those functions are not used later. Once that is done, add appropriate
version numbers to all variables that are assigned in the flowgraph. You
do not need to trace the steps of any particular algorithm to place the
Φ-functions as long as you add them to the flowgraph in appropriate
places. Answers that have a couple of extraneous Φ-functions will
receive appropriate partial credit, but answers that, for example, use a
maximal-SSA strategy of placing Φ-functions for all variables at the
beginning of every block will not be looked on with favor.

a = 1
b = a + 1

b = b + 1
c = c + 1

print(a)
print(b)
print(c)

a = a + b
c = a + 1

B1

B2 B3

B4

 CSE 401/M501 21au Final Exam 12/14/21

 Page 12 of 16

The last question concerns register allocation. Assume that we’re using the same hypothetical machine
that was presented in lecture and in some textbook examples.

Our instruction selection algorithm has been modified so it does not re-use registers, but instead just
creates temporaries and leaves register selection for later. Given the statement ans=a*x*x + b*x +c;
here’s what the instruction selector generated:

 a. LOAD t1 <- a // t1 = a
 b. LOAD t2 <- x // t2 = x
 c. MULT t3 <- t1, t2 // t3 = a*x
 d. MULT t4 <- t2, t3 // t4 = a*x*x
 e. LOAD t5 <- b // t5 = b
 f. MULT t6 <- t5, t2 // t6 = b * x
 g. ADD t7 <- t4, t6 // t7 = a*x*x + b *x
 h. LOAD t8 <- c // t8 = c
 i. ADD t9 <- t7, t8 // t9 = a*x*x + b*x +c
 j. STORE ans <- t9 // store ans

In a real compiler we would first use list scheduling to pick a (possibly) better order for the instructions,
then use graph coloring to assign temporaries (t1-t9) to actual registers. But for this question we’re only
concerned with register allocation so we’ll assume that this is the fixed, final order of the instructions.

Answer the questions

 about this sequence of code

 on

 the

 next

 page…..

 CSE 401/M501 21au Final Exam 12/14/21

 Page 13 of 16

Question 6. (15 points) Register allocation/graph coloring.

(a) (10 points) Draw the interference graph for the temporary variables (t1-t9)
in this code. You should assume that the code is executed in the sequence
given and not rearranged before assigning registers.

(b) (5 points) Give an assignment of groups of temporary variables to registers that uses the minimum
number of registers possible based on the information in the interference graph. Use R1, R2, R3, … for
the register names.

Have a great holiday break and best wishes for the new year!
The CSE 401/M501/P501 staff

a. LOAD t1 <- a
b. LOAD t2 <- x
c. MULT t3 <- t1, t2
d. MULT t4 <- t2, t3
e. LOAD t5 <- b
f. MULT t6 <- t5, t2
g. ADD t7 <- t4, t6
h. LOAD t8 <- c
i. ADD t9 <- t7, t8
j. STORE ans <- t9

 CSE 401/M501 21au Final Exam 12/14/21

 Page 14 of 16

Additional Space for answers, if needed. Please identify the question you are answering here, and be
sure to indicate on the question page that the answers are continued here.

 CSE 401/M501 21au Final Exam 12/14/21

 Page 15 of 16

Additional Space for answers, if needed. Please identify the question you are answering here, and be
sure to indicate on the question page that the answers are continued here.

 CSE 401/M501 21au Final Exam 12/14/21

 Page 16 of 16

Additional Space for answers, if needed. Please identify the question you are answering here, and be
sure to indicate on the question page that the answers are continued here.

