
● Distribution of tasks in phases of a typical compiler (scanning, parsing, semantics, optimization,
code gen, etc.)

○ 19au1, 18au1, 15wi1
● Static semantics and type checking

○ 18au3.d, 18sp3.d, 15wi2.c
● Codegen

○ 21au1, 21au2.e, 19au2, 18au2, 18au3.e, 18sp2, 18sp3.e, 15wi2.d, 15wi3
● Runtime storage organization

○ Representation of scalars, arrays, objects
■ 11au2 (sort of)

○ Address space layout: code, static data, stack, heap
● Object representation

○ Data layout
○ Object creation - new

■ 17wi1
○ Inheritance and method overriding
○ Method invocation using dynamic dispatch (vtables)

■ 18sp1, 15wi3
● Optimization

○ Scope of optimizations: peephole, local, global, interprocedural; tradeoffs between very
local vs more global analysis/optimization

○ Basics of dataflow analysis (def, use, in, and out sets); be able to solve simple problems
■ 21au4, 18au5, 19au4, 19au5, 18sp5

○ Dominators and dominance frontiers; be able to figure these out in a flowgraph.
■ 21au5, 18au6.a, 19au6, 18sp6.a, 17wi5

○ SSA: be able to translate a simple flowgraph into SSA form (informally; you don't need to
exactly implement any particular algorithm but you should be able to place all necessary
phi functions appropriately)

■ 21au6, 18au6.b, 18sp6.b, 15wi6
○ Examples of some common optimizations and how dataflow or SSA analysis reveals

when these are possible (e.g., common subexpressions, live variables, constant folding).
■ 21au3, 18au4, 18sp4

● Major backend issues - not in detail, but know the major ideas and key algorithms discussed in
class

○ Instruction selection & tree pattern matching
○ Instruction scheduling & list scheduling

■ 18au8, 19au8, 18sp7, 17wi7, 15wi5
○ Register allocation & allocation by graph coloring

■ 21au6, 18au7, 19au7, 17wi8, 15wi4
● Garbage collection - general ideas, not details.

○ 17wi9, 15wi7
○ Basic notions of liveness, reachability
○ Reasons behind strategies like compacting and generational collectors

