
CSE 401 - Section 9 – Data Flow & SSA
1. Reaching Definitions

Consider the following small program that we used as a dataflow example for live variable
analysis in lecture. This time all the statements are labeled individually, and we want to
compute reaching definitions.

 L0: a = 0
 L1: b = a + 1
 L2: c = c + b
 L3: a = b * 2
 L4: if a < N goto L1
 L5: return c

 The reaching definitions dataflow problem is to determine for each variable definition

which other blocks in the control flow graph could potentially see the value of the variable
that was assigned in that definition. To simplify things, we will treat each individual
statement above as a separate block, and use the statement labels as the names of
both the blocks and the definitions in them. So, for example, reaching definition analysis
would allow us to determine that definition L0, which assigns to a, can reach block L1.

 A definition d in block p reaches block q if there is at least one path from p to q along

which definition d is not redefined.

 Dataflow sets for this task:

 GEN(b): the definitions assigned and not killed in block b
 KILL(b): the definitions of variables overwritten in block b
 IN(b): the definitions that are reaching upon entering block b
 OUT(b): the definitions that are reaching upon exiting block b

Equations for IN(b) and OUT(b) in terms of other sets and other basic blocks:

IN(b) = ⋃p∈pred(b) OUT(p)

 OUT(b) = GEN(b) ∪ (IN(b) – KILL(b))

a) Compute the reaching definitions for the blocks in the given program, treating each
statement as a separate block. In the following table, compute the GEN and KILL sets
for each block, and then use those answers to compute successive iterations of the IN
and OUT sets until there are no more changes to be made.

Note that this is a forward dataflow analysis problem, so the answer will converge
faster if you compute from beginning to end (i.e. starting with L0).

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2)

L0

L1

L2

L3

L4

L5

b) Now that we have completed our dataflow analysis, we want to apply optimizations to
the code. After noticing that the definition L0 of the variable a is a constant value, we
wonder if it is possible to use constant propagation to replace uses of the variable a
with the constant 0.

 Is it possible to replace the use of a in block L1 with the constant 0? Justify your

answer using evidence from the sets that you computed during dataflow analysis.

2. Single Static Assignment Conversion
a) Consider the following simplified control flow graph. For each node in the graph, fill

in the table with the set of nodes that are strictly dominated by that node and the
set of nodes in its dominance frontier. Recall: node X dominates Y iff every path from
the CFG entry point to Y includes X. Node X strictly dominates Y iff X dominates Y
and X ≠ Y. Finally, node Y is in the dominance frontier of node X if X dominates an
immediate predecessor of Y but X does not strictly dominate Y.

NODE STRICTLY DOMINATES DOMINANCE
FRONTIER

0

1

2

3

4

5

6

b) Now, you will complete the conversion to SSA. Suppose the control flow graph from
part (a) contains the following code. Convert this code to Single Static Assignment
form. Remember that you can use the dominance frontiers computed in part (a) to
determine which variables need to be merged (using phi functions) in each block.

