
CSE 401 - LL Semantics, Semantics, Type Checking, & Vtables
1. Edit the following Grammars to make them LL(1). Then walk through the top down parse
for the string given in the parenthesis.

Grammar 1 (“azx”) Grammar 2 (“ax”)
0. S ::= a B | a w 0. S ::= a B
1. B ::= C x | y 1. B ::= C x | y
2. C ::= ε | z 2. C ::= ε | x

Grammar 3 (“azx”) Grammar 4 (“azx”)
0. S ::= S B | a | w 0. S ::= B w | a B
1. B ::= C x | y 1. B ::= S | z x
2. C ::= ε | z

2. Suppose we have the following global scope:

Now, consider the following hypothetical method definition for Bar.method:
public int method(int i, int j) {
 int r;
 boolean b;
 Foo o;
 if (this.field) {
 o = this;
 b = o.whoop(i + j);
 r = o.val;
 } else {
 r = i * j + 3;
 }
 return r;
}

a. What variables (locals, parameters, etc.) are defined in the local scope in the method body?

b. When we execute this method body, a runtime error could result. Explain how something could
go wrong by giving values of the parameters and/or variables involved that would cause a
runtime error.

c. The method body also has type errors. Can you describe which type check(s) the compiler
could use to deduce this fact?

d. Does every possible execution of this method produce a runtime error? Can you describe any
that happen to be statically correct? (Again, possible runtime values for parameters/variables
would suffice.)

e. Suppose that we replaced the use of this.field in the method body to call a boolean
method that always returns false. How would this change your answers to the previous
questions?

class Bar { boolean field; public int method(int i, int j); }
class Foo extends Bar { int val; public boolean whoop(int x); }

Appendix—Canonical LL(1) Problems and their Solutions:

FIRST Conflict: FIRST FOLLOW Conflict:
Both productions of A have α in their FIRST sets B is nullable, α in FIRST & FOLLOW
0. A ::= αβ | αγ 0. A ::= B α
 1. B ::= α | ε

Solution: Solution:
Factor out the prefix (α) Substitute B into A
0. A ::= α Tail 0. A ::= αα | α
1. Tail ::= β | γ Factor out the prefix (α)
 0. A ::= α Tail
 1. Tail ::= α | ε

Left Recursion: Indirect Left Recursion:
Special FIRST conflict: β in FIRST for both productions Recursively alternates between A & B
0. A ::= A α | β 0. A ::= B β
 1. B ::= A | α

Solution: Solution:
Create recursive tail from suffix of recursive production Substitute B into A
1. Tail ::= α Tail 0. A ::= A β | α β
Append Tail to non recursive productions Solve like normal Left Recursion
0. A ::= β Tail 0. A ::= α β Tail
1. Tail ::= α Tail 1. Tail ::= β Tail | ε
Add empty string (ε) as a rhs for the tail production
0. A ::= β Tail
1. Tail ::= α Tail | ε

