
CSE 401 - LL Semantics, Semantics, Type Checking, & Vtables
Edit the following Grammars to make them LL(1). Then walk through
the top down parse for the string given in the parenthesis.
Grammar 1 (“azx”) Grammar 2 (“ax”)
0. S ::= a B | a w 0. S ::= a B
1. B ::= C x | y 1. B ::= C x | y
2. C ::= ε | z 2. C ::= ε | x

Grammar 3 (“azx”) Grammar 4 (“azx”)
0. S ::= S B | a | w 0. S ::= B w | a B
1. B ::= C x | y 1. B ::= S | z x
2. C ::= ε | z

0. S ::= a Tail

1. Tail ::= B | w

2. B ::= C x | y

3. C ::= ε | z

S

Tail

B

C

a z x

0. S ::= a B

2. B ::= x Tail | y

3. Tail ::= x | ε

S

B

a x ε

Tail

C

S

Tail

a z x ε

B Tail

0. S ::= a Tail | w Tail

1. Tail ::= B Tail | ε

2. B ::= C x | y

3. C ::= ε | z

0. S ::= z x w T | a As z x T

1. As ::= a As | ε

2. T ::= w T | ε
S

a ε z x ε
 x

As T

2. Suppose we have the following global scope:

Now, consider the following hypothetical method definition for Bar.method:
public int method(int i, int j) {
 int r;
 boolean b;
 Foo o;
 if (this.field) {
 o = this;
 b = o.whoop(i + j);
 r = o.val;
 } else {
 r = i * j + 3;
 }
 return r;
}

a. What variables (locals, parameters, etc.) are defined in the local scope in the method body?

Bar this; int i; int j; int r; boolean b; Foo o;

Remember that every MiniJava method has an implicit parameter “this” for the receiver
object. For the sake of type-checking the method body, it makes sense to treat it like a normal
parameter, although you may treat it however you’d like in your symbol tables.

b. When we execute this method body, a runtime error could result. Explain how something could

go wrong by giving values of the parameters and/or variables involved that would cause a
runtime error.

this = Bar(field: true);

The error here is the potential failure of the downcast in the assignment “o = this.” Unlike
real Java, MiniJava’s dynamic semantics defines no behavior for a failing downcast, so the
static semantics forbids downcasts altogether.

class Bar { boolean field; public int method(int i, int j); }
class Foo extends Bar { int val; public boolean whoop(int x); }

c. The method body also has type errors. Can you describe which type check(s) the compiler
could use to deduce this fact?

Since MiniJava’s static semantics forbids downcasts, a MiniJava compiler must check that the
type of an assignment statement’s right-hand side is either the same as the left-hand side’s
type or a subclass type of the left-hand side’s class type.

d. Does every possible execution of this method produce a runtime error? Can you describe any

that happen to be statically correct? (Again, possible runtime values for parameters/variables
would suffice.)

No, some possible executions of the method avoid the branch that causes an issue, for example
given the following value of this:

this = Bar(field: false);

Alternatively, some possible executions could enable the “downcast” to succeed, if the receiver
object (this) ends up really being an instance of the subclass Foo, like so:

this = Foo(field: true, val: <any integer>);

e. Suppose that we replaced the use of this.field in the method body to call a boolean

method that always returns false. How would this change your answers to the previous
questions?

Even though the ill-behaving branch would never get run, type checking composes through
types and type signatures (not the specific values!), so a type checker for MiniJava will verify
the if body (i.e., will report a type error), despite the forbidden behavior being impossible
according to the dynamic semantics.

