
LL Parsing &
Semantics

CSE 401/M501

Adapted from Spring 2021



Announcements
- Parser + AST due TONIGHT!
- Homework 3 (LL grammars) due Wednesday
- Next section: midterm review

- Bring your conceptual questions and past midterm questions!



Agenda

- Semantics & Type Checking
- Review: Semantics vs. Type Checking
- Type Checking for MiniJava

- LL parsing worksheet



Semantics & Type Checking



semantics: precise meaning of program syntax

dynamic semantics: systematic rules to define runtime behavior

static semantics: systematic rules to define statically correct behavior

Semantics, Dynamic and Static

what type checking implements

what interpretation or code generation implements



Static Semantics of MiniJava

1. never add, subtract, multiply, or print non-integers

2. never call a non-existent method

3. never access a non-existent field

n. … and so on (see the assignment page for more)

Every language has its own idea of “statically correct,”
but in MiniJava, statically correct code must...

How do type checks relate to these conditions?



Type Checking for MiniJava

The type checker’s goal is to verify that a source program is statically correct.

We can’t check that directly, but we can build a checkable type system so that:
well-typed ⟹ statically correct

Note: type checking depends on context – an implementation will depend on keeping 
track of types across different contexts (a scoped symbol table)



Type Checking for MiniJava

statically correct

well-typed

MiniJava syntax



Examples

Suppose the following declarations are in effect:
Global scope: class Foo { int f; int m(boolean b); }
Local scope: Foo this (implicit); int x; boolean y;

56

In these scopes, which MiniJava expressions have type int? Why (not)?

2+x

this.f

x+this.m()

x+z.m(y)

x+this.m(true)

x+(new Foo()).f

x+y

(new Bar()).f



Scopes and Symbol Tables

Accurately tracking scope information, via symbol tables, is critical to type checking.

Some guiding observations from today:
- All classes in MiniJava will need symbol tables

- When looking for a symbol, start in method table, then enclosing class, then global

- To generate symbol tables, it will make your life easier to go layer-by-layer
- Global information needed everywhere! Makes sense to do that first
- Easier to check a method body once global information is already computed

- Implementation tip:
- Add pointers in your AST nodes to relevant type/symbol table information



The Take-Away

Static semantics is usually about what code must not do.

∴ ruling out ill-behaved traces is a useful mental model
∴ implementing and debugging a type checker is all about edge cases
∴ need to consider all names in scope, with their type (signatures)



Problem 2: Static Semantics & Type Checking



Problem 1: LL parsing


