
CSE 401/M501 – Compilers

Compiler Backend Survey

Spring 2022

Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring

UW CSE 401/M501 Spring 2022 Q-6

Compiler Organization

UW CSE 401/M501 Spring 2022 Q-7

pa
rs

e

sc
an

se
m

an
tic

s

front end
op

t2

op
t1

op
tn

middle

isn
tr.

 s
ch

ed

in
st

r.
se

le
ct

re
g.

 a
llo

c

back end

infrastructure – symbol tables, trees, graphs, etc

Big Picture

• Compiler consists of lots of fast stuff followed
by hard problems
– Scanner: O(n)
– Parser: O(n)
– Analysis & Optimization: ~ O(n log n)
– Instruction selection: fast or NP-Complete
– Instruction scheduling: NP-Complete
– Register allocation: NP-Complete

UW CSE 401/M501 Spring 2022 Q-8

IR for Code Generation

• Assume a (very) low-level IR
– 3 address, register-register instructions plus

load/store
r1 <- r2 op r3

– Could be tree structure or linear
– Expose as much detail as possible

• Assume “enough” (i.e., ¥) registers
– Invent new temporaries for intermediate results
– Map to actual registers towards the end

UW CSE 401/M501 Spring 2022 Q-9

Overview: Instruction Selection

• Map IR into assembly code
• Assume known storage layout and code shape

– i.e., the optimization phases have already done
their thing

• Combine low-level IR operations into machine
instructions (take advantage of addressing
modes, etc.)

UW CSE 401/M501 Spring 2022 Q-10

Overview: Instruction Scheduling

• Reorder instructions to minimize execution time
– hide latencies – processor function units,

memory/cache stalls
– Originally invented for supercomputers (60s)
– Required to get reasonable (or correct!) code on

classic RISC architectures (basically 3-address code)
– Still important on most machines

• Even non-RISC machines, e.g., x86 family
• Even if processor reorders on the fly
Good schedules help processor do a better job

• Assume fixed program at this point
UW CSE 401/M501 Spring 2022 Q-11

Overview: Register Allocation

• Map values to actual registers
– Previous phases change need for registers

• Add code to spill values to temporaries in
memory and reload as needed, etc.

• Usually worth doing another instruction
scheduling pass afterwards if spill code
inserted

UW CSE 401/M501 Spring 2022 Q-12

Conventional Wisdom
• We typically lose little by solving these independently

– But not always, of course (iterating phases on x86-64 can help
because of limited registers; use of memory operands)

• Instruction selection
– Use some form of pattern matching
– ¥ virtual registers – create as needed

• Instruction scheduling
– Within a block, list scheduling is close to optimal
– Across blocks: extended basic blocks or trace scheduling if list

scheduling not good enough
• Register allocation

– Start with unlimited virtual registers and map to some subset of
K real registers

UW CSE 401/M501 Spring 2022 Q-13

Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring

UW CSE 401/M501 Spring 2022 Q-14

Instruction Selection

• Map IR into assembly code

• Assume known storage layout and code shape

UW CSE 401/M501 Spring 2022 Q-15

A Simple Low-Level IR (1)

• This example is from Appel, but details aren’t
really important. What matters is to get a feel for
the level of detail involved.

• Expressions:
– CONST(i) – integer constant i
– TEMP(t) – temporary t (i.e., register)
– BINOP(op,e1,e2) – application of op to e1,e2
– MEM(e) – contents of memory at address e

• Means value when used in an expression
• Means address when used as target of assignment

– CALL(f,args) – apply function f to argument list args

UW CSE 401/M501 Spring 2022 Q-16

Simple Low-Level IR (2)
• Statements
– MOVE(TEMP t, e) – evaluate e and store in temporary t
– MOVE(MEM(e1), e2) – evaluate e1 to yield address a;

evaluate e2 and store at a
– EXP(e) – evaluate expressions e and discard result
– SEQ(s1,s2) – execute s1 followed by s2
– NAME(n) – assembly language label n
– JUMP(e) – jump to e, which can be a NAME label, or more

compex (e.g., switch)
– CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to

label t, otherwise jump to f
– LABEL(n) – defines location of label n in the code

UW CSE 401/M501 Spring 2022 Q-17

Low-Level IR Example (1)

• Access a local variable at a known offset k
from the frame pointer fp
– Linear

MEM(BINOP(PLUS, TEMP fp, CONST k))

– Tree

UW CSE 401/M501 Spring 2022 Q-18

MEM

+

TEMP fp CONST k

Low-Level IR Example (2)

• Access an array element e[k], where each
element takes up w storage locations

UW CSE 401/M501 Spring 2022 Q-19

MEM

+

MEM *

e k CONST

w

Instruction Selection Issues

• Given the low-level IR, there are many
possible code sequences that implement it
correctly
– e.g. set %rax to 0 on x86-64 (did we miss any?)

movq $0,%rax salq 64,%rax
subq %rax,%rax shrq 64,%rax
xorq %rax,%rax imulq $0,%rax

– Many machine instructions do several things at
once – e.g., register arithmetic and effective
address calculation, e.g.,

movq offset(%rbase, %rindex, scale), %rdest

UW CSE 401/M501 Spring 2022 Q-20

Instruction Selection Criteria

• Several possibilities
– Fastest
– Smallest
– Minimize power consumption (ex: don’t use a

function unit if leaving it powered-down is a win)
• Sometimes not obvious
– e.g., if one of the function units in the processor is

idle and we can select an instruction that uses that
unit, it effectively executes for free, even if that
instruction wouldn’t be chosen normally
• (Some interaction with scheduling here…)
• (and it might consume extra power, so bad if that matters)

UW CSE 401/M501 Spring 2022 Q-21

Tree Pattern Matching

• Goal: find a sequence of machine instructions
that perform the computation described by
the program IR code
– Describe machine instructions using same low-

level IR used for program, then
– Use tree pattern matching to pick instructions that

match fragments of the program IR tree; use a
combination of these to cover the whole IR tree

UW CSE 401/M501 Spring 2022 Q-22

An Example Target Machine (1)

• Arithmetic Instructions
– (unnamed) ri TEMP
– ADD ri <- rj + rk

– MUL ri <- rj * rk

– SUB and DIV are similar

– For some examples, we’ll assume there is at least one
register (R0) hardwired to be 0 always

UW CSE 401/M501 Spring 2022 Q-23

+

*

An Example Target Machine (2)

• Immediate Instructions
– ADDI ri <- rj + c

– SUBI ri <- rj - c

UW CSE 401/M501 Spring 2022 Q-24

+

CONST

+

CONST

CONST

-

CONST

An Example Target Machine (3)

• Load
– LOAD ri <- M[rj + c]

UW CSE 401/M501 Spring 2022 Q-25

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

An Example Target Machine (4)

• Store
– STORE M[rj + c] <- ri

UW CSE 401/M501 Spring 2022 Q-26

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

MOVE MOVE MOVE MOVE

Tree Pattern Matching (1)

• Goal: Tile the low-level IR tree with operation
(instruction) trees

• A tiling is a collection of <node,op> pairs
– node is a node in the tree
– op is an operation tree
– <node,op> means that op could implement the

subtree at node

UW CSE 401/M501 Spring 2022 Q-27

Tree Pattern Matching (2)

• A tiling “implements” a tree if it covers every
node in the tree and the overlap between any
two tiles (trees) is limited to a single node
– If <node,op> is in the tiling, then node is also

covered by a leaf of another operation tree in the
tiling – unless it is the root

– Where two operation trees meet, they must be
compatible (i.e., expect the same value in the
same location)

UW CSE 401/M501 Spring 2022 Q-28

Generating Tilings

Two common algorithms
• Maximal munch:
– Top-down tree walk.
– Find largest tile that fits each node

• Dynamic programming:
– Assign cost to each pattern (instruction)
– Assign costs to each node in the IR tree

cost = cost of pattern @ node + subtrees
– Try all possible combinations bottom-up;

retain cheapest

UW CSE 401/M501 Spring 2022 Q-29

Heuristic: One instruction
that “does more” is likely
cheaper than several that
do less

Slower, but optimal for a
given cost model

Example – Tree for a[i]:=x

UW CSE 401/M501 Spring 2022 Q-30

MEM

MOVE

MEM

+

CONST xFP

+

MEM

+

CONST aFP

*

CONST 4TEMP i

Example – Tree for a[i]:=x

UW CSE 401/M501 Spring 2022 Q-31

MEM

MOVE

MEM

+

CONST xFP

+

MEM

+

CONST aFP

*

CONST 4TEMP i

1

2

3 4

5

6

7

8

9

Generating Code

Given a tiled tree, to generate code
• Do a postorder treewalk with node-dependant

order for children
• Each tile corresponds to a code sequence;

emit code sequences in order
• Connect tiles by using same register name to

tie boundaries together

UW CSE 401/M501 Spring 2022 Q-32

Example – Tree for a[i]:=x

UW CSE 401/M501 Spring 2022 Q-33

MEM

MOVE

MEM

+

CONST xFP

+

MEM

+

CONST aFP

*

CONST 4TEMP i

1

2

3 4

5

6

7

8

9

2. LOAD r1 <- M[fp+aoff]
4. ADDI r2 <- 4 + r0
5. MUL r2 <- r2 * ri
6. ADD r1 <- r1 + r2
8. LOAD r2 <- M[fp+xoff]
9. STORE M[r1+0] <- r2

Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring

UW CSE 401/M501 Spring 2022 Q-34

Instruction Scheduling

• Reorder instructions to minimize execution
time given instruction and operand latencies

• Assume fixed program at this point

UW CSE 401/M501 Spring 2022 Q-35

Some Scheduling Issues (1)

• Many operations have non-zero latencies
• Modern machines can issue several

operations per cycle
– Want to take advantage of multiple function units

on chip

• Loads & Stores may or may not block
– may be (many) cycles after load/store starts to do

other useful work

UW CSE 401/M501 Spring 2022 Q-36

Some Scheduling Issues (2)

• Branch costs vary
• Branches on some processors have delay slots
• Modern processors have good heuristics to

predict whether branches are taken and try to
keep pipelines full, but good code from compiler
makes these more effective

GOAL: Scheduler should reorder instructions to hide
latencies, take advantage of multiple function units
and delay slots, and help the processor effectively
pipeline execution

UW CSE 401/M501 Spring 2022 Q-37

Latencies for a Simple Example Machine

UW CSE 401/M501 Spring 2022 Q-38

Operation Cycles
LOAD 3
STORE 3
ADD 1
MULT 2
SHIFT 1

BRANCH 0 TO 8

Example: w = w*2*x*y*z;
Simple schedule

1 LOAD r1 <- w
4 ADD r1 <- r1,r1
5 LOAD r2 <- x
8 MULT r1 <- r1,r2
10 LOAD r2 <- y
13 MULT r1 <- r1,r2
15 LOAD r2 <- z
18 MULT r1 <- r1,r2
20 STORE w <- r1
23 r1 free

2 registers, 22 cycles

Loads early
1 LOAD r1 <- w
2 LOAD r2 <- x
3 LOAD r3 <- y
4 ADD r1 <- r1,r1
5 MULT r1 <- r1,r2
6 LOAD r2 <- z
7 MULT r1 <- r1,r3
9 MULT r1 <- r1,r2
11 STORE w <- r1
14 r1 is free

3 registers, 13 cycles

UW CSE 401/M501 Spring 2022 Q-39

Same instrs,
different order,
different regs

List Scheduling Algorithm Overview

• Build a precedence graph P of instructions,
labeled with priorities (usually number of
cycles on critical path to the end)

• Use list scheduling to construct a schedule,
one cycle at a time

• Rename registers to avoid false dependencies
and conflicts

UW CSE 401/M501 Spring 2022 Q-40

Precedence Graph

• Nodes n are operations
• Attributes of each node

type – kind of operation
delay – length of longest path to end of graph

• If node n2 uses the result of node n1, there is
an edge e = (n1,n2) in the graph

UW CSE 401/M501 Spring 2022 Q-41

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE 401/M501 Spring 2022 Q-42

i

h

gf

d

b

a

c

e

3

5

87

109

1210

13

List Scheduling

• Construct a schedule, one cycle at a time
– Keep a list of operations that are ready to execute
– At each cycle, chose a ready operation and

schedule it
• “Best” pick: one that is on the “critical path” – i.e.,

an instruction that has longest path to end of graph

– Update ready list, deleting scheduled op and add
ones that will be ready on next cycle

UW CSE 401/M501 Spring 2022 Q-43

Heuristic

List Scheduling Algorithm
Cycle = 1; Ready = leaves of P; Active = empty;
while (Ready and/or Active are not empty)

if (Ready is not empty)
remove an op from Ready;
S(op) = Cycle;
Active = Active È op;

Cycle++;
for each op in Active
if (S(op) + delay(op) <= Cycle)

remove op from Active;
for each successor s of op in P

if (s is ready – i.e., all operands available)
add s to Ready

UW CSE 401/M501 Spring 2022 O-44

Rename registers
as needed

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE 401/M501 Spring 2022 Q-45

i

h

gf

d

b

a

c

e

instr done
1 a LOAD 4

cycle: 1
ready: a c e g
active: --

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE 401/M501 Spring 2022 Q-46

i

h

gf

d

b

a

c

e

instr done
1 a LOAD 4
2 c LOAD 5

cycle: 1 2
ready: a c e g
active: a

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE 401/M501 Spring 2022 Q-47

i

h

gf

d

b

a

c

e

instr done
1 a LOAD 4
2 c LOAD 5
3 e LOAD 6

cycle: 1 2 3
ready: a c e g
active: a c

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE 401/M501 Spring 2022 Q-48

i

h

gf

d

b

a

c

e

instr done
1 a LOAD 4
2 c LOAD 5
3 e LOAD 6
4 b ADD 5

cycle: 1 2 3 4
ready: a c e g b
active: a c e

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE 401/M501 Spring 2022 Q-49

i

h

gf

d

b

a

c

e

instr done
1 a LOAD 4
2 c LOAD 5
3 e LOAD 6
4 b ADD 5
5 d MULT 7

cycle: 1 2 3 4 5
ready: a c e g b d
active: a c e b

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE 401/M501 Spring 2022 Q-50

i

h

gf

d

b

a

c

e

instr done
1 a LOAD 4
2 c LOAD 5
3 e LOAD 6
4 b ADD 5
5 d MULT 7
6 g LOAD 9

cycle: 1 2 3 4 5 6
ready: a c e g b d
active: a c e b d

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE 401/M501 Spring 2022 Q-51

i

h

gf

d

b

a

c

e

instr done
1 a LOAD 4
2 c LOAD 5
3 e LOAD 6
4 b ADD 5
5 d MULT 7
6 g LOAD 9
7 f MULT 9

cycle: 1 2 3 4 5 6 7
ready: a c e g b d f
active: a c e b d g

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE 401/M501 Spring 2022 Q-52

i

h

gf

d

b

a

c

e

instr done
1 a LOAD 4
2 c LOAD 5
3 e LOAD 6
4 b ADD 5
5 d MULT 7
6 g LOAD 9
7 f MULT 9
8 ---

cycle: 1 2 3 4 5 6 7 8
ready: a c e g b d f
active: a c e b d g f

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE 401/M501 Spring 2022 Q-53

i

h

gf

d

b

a

c

e

instr done
1 a LOAD 4
2 c LOAD 5
3 e LOAD 6
4 b ADD 5
5 d MULT 7
6 g LOAD 9
7 f MULT 9
8 ---
9 h MULT 11

cycle: 1 2 3 4 5 6 7 8 9
ready: a c e g b d f h
active: a c e b d g f

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE 401/M501 Spring 2022 Q-54

i

h

gf

d

b

a

c

e

instr done
1 a LOAD 4
2 c LOAD 5
3 e LOAD 6
4 b ADD 5
5 d MULT 7
6 g LOAD 9
7 f MULT 9
8 ---
9 h MULT 11
10 ---

cycle: 1 2 3 4 5 6 7 8 9 10
ready: a c e g b d f h
active: a c e b d g f h

3

5

87

109

1210

13

Example
• Code

a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

UW CSE 401/M501 Spring 2022 Q-55

i

h

gf

d

b

a

c

e

instr done
1 a LOAD 4
2 c LOAD 5
3 e LOAD 6
4 b ADD 5
5 d MULT 7
6 g LOAD 9
7 f MULT 9
8 ---
9 h MULT 11
10 ---
11 i STORE 14

cycle: 1 2 3 4 5 6 7 8 9 10 11
ready: a c e g b d f h i
active: a c e b d g f h

3

5

87

109

1210

13

Forward vs Backwards

• Alternative: backward list scheduling
– Work from the root to the leaves
– Schedules instrs from end to beginning of the block

• In practice, compilers try both and pick the result
that minimizes costs
– Little extra expense since the precedence graph and

other information can be reused
– Different directions win in different cases

• Optimal alg possible? Yes, but NP-hard for
realistic machine models

UW CSE 401/M501 Spring 2022 Q-56

Beyond Basic Blocks

• List scheduling dominates, but moving beyond
basic blocks can improve quality of the code.
Some possibilities:
– Schedule extended basic blocks (tree-like subgraph)
• Watch for exit points – limits reordering or requires

compensating
– Trace scheduling
• Use profiling information to select regions for

scheduling using traces (paths) through code
– Optimize schedules for high-frequency paths

UW CSE 401/M501 Spring 2022 Q-57

Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring

UW CSE 401/M501 Spring 2022 Q-58

Register Allocation by Graph Coloring

• Convert the (seemingly) infinite sequence of
temporary data references, t1, t2, … into
assignments to finite number of actual registers

• Goal: Use available registers with minimum
spilling

• Problem: Minimizing the number of registers is
NP-complete … it is equivalent to chromatic
number – minimum colors needed to color nodes
of a graph so no edge connects same color

UW CSE 401/M501 Spring 2022 Q-59

Begin With Data Flow Graph

• procedure-wide register allocation
• only live variables require register storage

• two variables (values) interfere when their live
ranges overlap

UW CSE 401/M501 Spring 2022 Q-60

dataflow analysis: a variable is live at node N if
the value it holds is used on some path further

down the control-flow graph; otherwise it is dead

Live Variable Analysis

UW CSE 401/M501 Spring 2022 Q-61

a := read();
b := read();
c := read();
d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e

e

a
b

d

a := read();
b := read();
c := read();
d := a + b*c;
if (d < 10) then

e := c+8;
print(c);

else
f := 10;
e := f + d;
print(f);

fi
print(e);

Register Interference Graph

UW CSE 401/M501 Spring 2022 Q-62

a := read();
b := read();
c := read();
d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e

e

a
b

a b

e

dc

f

d

Graph Coloring

• NP complete problem

• Heuristic: color easy nodes last
– find node N with lowest degree
– remove N from the graph
– color the simplified graph
– set color of N to the first color that is not used by any

of N ’s neighbors
• Basics due to Chaitin (1982), refined by Briggs

(1992)

UW CSE 401/M501 Spring 2022 Q-63

a b

e

dc

f

Apply Heuristic

UW CSE 401/M501 Spring 2022 Q-64

Apply Heuristic

UW CSE 401/M501 Spring 2022 Q-65

Final Assignment

UW CSE 401/M501 Spring 2022 Q-80

a b

e

dc

f

a := read();
b := read();
c := read();
d := a + b*c;
if (d < 10) then

e := c+8;
print(c);

else
f := 10;
e := f + d;
print(f);

fi
print(e);

Some Graph Coloring Issues

• May run out of registers
– Solution: insert spill code and reallocate

• Special-purpose and dedicated registers
– Examples: function return register, function

argument registers, registers required for
particular instructions

– Solution: “pre-color” some nodes to force
allocation to a particular register

UW CSE 401/M501 Spring 2022 Q-81

Exercise

given that a and b are live on entry and dead on exit,
and that x and y are live on exit:
(a) construct the register interference graph
(b) color the graph; how many registers are needed?

UW CSE 401/M501 Spring 2022 Q-82

{
int tmp_2ab = 2*a*b;
int tmp_aa = a*a;
int tmp_bb = b*b;

x := tmp_aa + tmp_2ab + tmp_bb;
y := tmp_aa - tmp_2ab + tmp_bb;

}

4 Registers Needed

UW CSE 401/M501 Spring 2022 Q-83

a tmp_2ab

tmp_bb

x y

tmp_aab

Live Ranges
• Real graph-coloring register allocators don’t allocate

temp registers – they allocate live ranges
• A live range

– In a basic block is the interval between a defn and last use
– In a CFG, similar but more complex; e.g. see Q-61,62. Net is a

coherent set of definitions and uses.
– Every definition can reach every use
– Every use that a definition can reach is in the same live range

• Idea: disjoint uses of a variable in different parts of the
program don’t actually interfere, ∴ in separate live ranges
– So we build a SSA form of the IR to construct the interference

graph!

UW CSE 401/M501 Spring 2022 Q-85

Live Ranges: Example
1. loadi … ® rfp
2. loadai rfp, 0 ® rw
3. loadi 2 ® r2
4. loadai rfp,xoffset ® rx
5. loadai rfp,yoffset ® ry
6. loadai rfp,zoffset ® rz
7. mult rw, r2 ® rw
8. mult rw, rx ® rw
9. mult rw, ry ® rw
10. mult rw, rz ® rw
11. storeai rw ® rfp, 0

Register Interval
rfp [1,11]
rw [2,7]
rw [7,8]
rw [8,9]
rw [9,10]
rw [10,11]
r2 [3,7]
rx [4,8]
ry [5,9]
rz [6,10]

UW CSE 401/M501 Spring 2022 Q-86

Coalescing Live Ranges

• Idea: if two live ranges are connected by a
copy operation (MOV ri ® rj) but do not
otherwise interfere, then the live ranges can
be coalesced (combined)
– Rewrite all references to rj to use ri
– Remove the copy instruction

• Then need to fix up interference graph

UW CSE 401/M501 Spring 2022 Q-87

Advantages?

• Makes the code smaller, faster (no copy
operation)

• Shrinks set of live ranges
• Reduces the degree of any live range that

interfered with both live ranges ri, rj
• But: coalescing two live ranges can prevent

coalescing of others, so ordering matters
– Best: Coalesce most frequently executed ranges first

(e.g., inner loops)
• Can have a substantial payoff – do it!

UW CSE 401/M501 Spring 2022 Q-88

Graph Representation

• The interference graph representation drives the
time and space requirements for the allocator
(and maybe the compiler)

• Not unknown to have O(5K) nodes and O(1M)
edges

• Dual representation works best
– Triangular bit matrix for efficient access to

interference information
– Vector of adjacency vectors for efficient access to

node neighbors

UW CSE 401/M501 Spring 2022 Q-89

Overall Structure

• Then you may want to iterate with additional instruction selection
and scheduling passes, particularly on a complex machine where
operations can have both memory or register operands (e.g., x86)

UW CSE 401/M501 Spring 2022 Q-90

Find live
ranges

Build int.
graph Coalesce Spill

Costs
Find

Coloring

Insert
Spills

No Spills

More Coalescing Possible

Spills

And that’s it!

Modulo all the picky details, that is…

UW CSE 401/M501 Spring 2022 Q-91

