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Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring
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Compiler Organization
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Big Picture

• Compiler consists of lots of fast stuff followed 
by hard problems
– Scanner: O(n)
– Parser: O(n)
– Analysis & Optimization:  ~ O(n log n)
– Instruction selection: fast or NP-Complete
– Instruction scheduling: NP-Complete
– Register allocation: NP-Complete
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IR for Code Generation

• Assume a (very) low-level IR
– 3 address, register-register instructions plus 

load/store
r1 <- r2 op r3

– Could be tree structure or linear
– Expose as much detail as possible

• Assume “enough” (i.e., ¥) registers
– Invent new temporaries for intermediate results
– Map to actual registers towards the end
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Overview: Instruction Selection

• Map IR into assembly code
• Assume known storage layout and code shape

– i.e., the optimization phases have already done 
their thing

• Combine low-level IR operations into machine 
instructions (take advantage of addressing 
modes, etc.)
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Overview: Instruction Scheduling 

• Reorder instructions to minimize execution time
– hide latencies – processor function units, 

memory/cache stalls
– Originally invented for supercomputers (60s)
– Required to get reasonable (or correct!) code on 

classic RISC architectures (basically 3-address code)
– Still important on most machines

• Even non-RISC machines, e.g., x86 family
• Even if processor reorders on the fly
Good schedules help processor do a better job

• Assume fixed program at this point
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Overview: Register Allocation

• Map values to actual registers
– Previous phases change need for registers

• Add code to spill values to temporaries in 
memory and reload as needed, etc.

• Usually worth doing another instruction 
scheduling pass afterwards if spill code 
inserted
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Conventional Wisdom
• We typically lose little by solving these independently

– But not always, of course (iterating phases on x86-64 can help 
because of limited registers; use of memory operands)

• Instruction selection
– Use some form of pattern matching
– ¥ virtual registers – create as needed

• Instruction scheduling
– Within a block, list scheduling is close to optimal
– Across blocks: extended basic blocks or trace scheduling if list 

scheduling not good enough
• Register allocation

– Start with unlimited virtual registers and map to some subset of 
K real registers
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Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring
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Instruction Selection

• Map IR into assembly code

• Assume known storage layout and code shape
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A Simple Low-Level IR (1)

• This example is from Appel, but details aren’t 
really important.  What matters is to get a feel for 
the level of detail involved.

• Expressions:
– CONST(i) – integer constant i
– TEMP(t) – temporary t (i.e., register)
– BINOP(op,e1,e2) – application of op to e1,e2
– MEM(e) – contents of memory at address e

• Means value when used in an expression
• Means address when used as target of assignment

– CALL(f,args) – apply function f to argument list args
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Simple Low-Level IR (2)
• Statements
– MOVE(TEMP t, e) – evaluate e and store in temporary t
– MOVE(MEM(e1), e2) – evaluate e1 to yield address a; 

evaluate e2 and store at a
– EXP(e) – evaluate expressions e and discard result
– SEQ(s1,s2) – execute s1 followed by s2
– NAME(n) – assembly language label n
– JUMP(e) – jump to e, which can be a NAME label, or more 

compex (e.g., switch)
– CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to 

label t, otherwise jump to f
– LABEL(n) – defines location of label n in the code
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Low-Level IR Example (1)

• Access a local variable at a known offset k 
from the frame pointer fp
– Linear

MEM(BINOP(PLUS, TEMP fp, CONST k))

– Tree

UW CSE 401/M501 Spring 2022 Q-18
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+
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Low-Level IR Example (2)

• Access an array element e[k], where each 
element takes up w storage locations
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Instruction Selection Issues

• Given the low-level IR, there are many 
possible code sequences that implement it 
correctly
– e.g. set %rax to 0 on x86-64  (did we miss any?)

movq $0,%rax salq 64,%rax
subq %rax,%rax shrq 64,%rax
xorq %rax,%rax imulq $0,%rax

– Many machine instructions do several things at 
once – e.g., register arithmetic and effective 
address calculation, e.g.,

movq offset(%rbase, %rindex, scale), %rdest
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Instruction Selection Criteria

• Several possibilities
– Fastest
– Smallest
– Minimize power consumption (ex: don’t use a 

function unit if leaving it powered-down is a win)
• Sometimes not obvious
– e.g., if one of the function units in the processor is 

idle and we can select an instruction that uses that 
unit, it effectively executes for free, even if that 
instruction wouldn’t be chosen normally
• (Some interaction with scheduling here…)
• (and it might consume extra power, so bad if that matters)
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Tree Pattern Matching

• Goal: find a sequence of machine instructions 
that perform the computation described by 
the program IR code
– Describe machine instructions using same low-

level IR used for program, then
– Use tree pattern matching to pick instructions that 

match fragments of the program IR tree; use a 
combination of these to cover the whole IR tree
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An Example Target Machine (1)

• Arithmetic Instructions
– (unnamed) ri TEMP
– ADD ri <- rj + rk

– MUL ri <- rj * rk

– SUB and DIV are similar

– For some examples, we’ll assume there is at least one 
register (R0) hardwired to be 0 always
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An Example Target Machine (2)

• Immediate Instructions
– ADDI ri <- rj + c

– SUBI ri <- rj - c
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An Example Target Machine (3)

• Load
– LOAD  ri <- M[rj + c]
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An Example Target Machine (4)

• Store
– STORE  M[rj + c] <- ri

UW CSE 401/M501 Spring 2022 Q-26

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

MOVE MOVE MOVE MOVE



Tree Pattern Matching (1)

• Goal: Tile the low-level IR tree with operation 
(instruction) trees

• A tiling is a collection of <node,op> pairs
– node is a node in the tree
– op is an operation tree
– <node,op> means that op could implement the 

subtree at node
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Tree Pattern Matching  (2)

• A tiling “implements” a tree if it covers every 
node in the tree and the overlap between any 
two tiles (trees) is limited to a single node
– If <node,op> is in the tiling, then node is also 

covered by a leaf of another operation tree in the 
tiling – unless it is the root

– Where two operation trees meet, they must be 
compatible (i.e., expect the same value in the 
same location)
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Generating Tilings

Two common algorithms
• Maximal munch: 
– Top-down tree walk.  
– Find largest tile that fits each node

• Dynamic programming:
– Assign cost to each pattern (instruction)
– Assign costs to each node in the IR tree 

cost = cost of pattern @ node + subtrees
– Try all possible combinations bottom-up; 

retain cheapest
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Heuristic: One instruction 
that “does more” is likely 
cheaper than several that 
do less 

Slower, but optimal for a 
given cost model



Example – Tree for a[i]:=x
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Example – Tree for a[i]:=x
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Generating Code

Given a tiled tree, to generate code
• Do a postorder treewalk with node-dependant

order for children
• Each tile corresponds to a code sequence; 

emit code sequences in order
• Connect tiles by using same register name to 

tie boundaries together
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Example – Tree for a[i]:=x
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2. LOAD r1 <- M[fp+aoff]
4. ADDI r2 <- 4 + r0
5. MUL r2 <- r2 * ri
6. ADD r1 <- r1 + r2
8. LOAD r2 <- M[fp+xoff]
9. STORE M[r1+0] <- r2



Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring
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Instruction Scheduling 

• Reorder instructions to minimize execution 
time given instruction and operand latencies

• Assume fixed program at this point
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Some Scheduling Issues (1)

• Many operations have non-zero latencies
• Modern machines can issue several 

operations per cycle
– Want to take advantage of multiple function units 

on chip

• Loads & Stores may or may not block
– may be (many) cycles after load/store starts to do 

other useful work
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Some Scheduling Issues (2)

• Branch costs vary
• Branches on some processors have delay slots
• Modern processors have good heuristics to 

predict whether branches are taken and try to 
keep pipelines full, but good code from compiler 
makes these more effective

GOAL: Scheduler should reorder instructions to hide 
latencies, take advantage of multiple function units 
and delay slots, and help the processor effectively 
pipeline execution
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Latencies for a Simple Example Machine
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Operation Cycles
LOAD 3
STORE 3
ADD 1
MULT 2
SHIFT 1

BRANCH 0 TO 8



Example:  w = w*2*x*y*z;
Simple schedule

1  LOAD  r1 <- w
4  ADD r1 <- r1,r1
5 LOAD r2 <- x
8  MULT r1 <- r1,r2
10 LOAD r2 <- y
13 MULT r1 <- r1,r2
15 LOAD r2 <- z
18 MULT r1 <- r1,r2
20 STORE w <- r1
23 r1 free

2 registers, 22 cycles

Loads early
1 LOAD r1 <- w
2 LOAD r2 <- x
3 LOAD r3 <- y
4 ADD r1 <- r1,r1
5 MULT r1 <- r1,r2
6 LOAD r2 <- z
7 MULT r1 <- r1,r3
9 MULT r1 <- r1,r2
11 STORE w <- r1
14 r1 is free

3 registers, 13 cycles
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Same instrs, 
different order, 
different regs



List Scheduling Algorithm Overview

• Build a precedence graph P of instructions, 
labeled with priorities (usually number of 
cycles on critical path to the end)

• Use list scheduling to construct a schedule, 
one cycle at a time

• Rename registers to avoid false dependencies 
and conflicts
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Precedence Graph

• Nodes n are operations 
• Attributes of each node 

type – kind of operation
delay – length of longest path to end of graph

• If node n2 uses the result of node n1, there is 
an edge e = (n1,n2) in the graph
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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List Scheduling

• Construct a schedule, one cycle at a time
– Keep a list of operations that are ready to execute
– At each cycle, chose a ready operation and 

schedule it
• “Best” pick: one that is on the “critical path” – i.e., 

an instruction that has longest path to end of graph

– Update ready list, deleting scheduled op and add 
ones that will be ready on next cycle
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Heuristic



List Scheduling Algorithm
Cycle = 1;  Ready = leaves of P;  Active = empty;
while (Ready and/or Active are not empty)

if (Ready is not empty)
remove an op from Ready;
S(op) = Cycle;
Active = Active È op;

Cycle++;
for each op in Active
if (S(op) + delay(op) <= Cycle)

remove op from Active;
for each successor s of op in P

if (s is ready – i.e., all operands available)
add s to Ready
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Rename registers
as needed



Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done
1 a  LOAD 4
2 c  LOAD 5
3 e  LOAD 6

cycle: 1 2 3
ready: a c e g
active: a c
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1

UW CSE 401/M501 Spring 2022 Q-48

i

h

gf

d

b

a

c

e

#  instr done
1 a  LOAD 4
2 c  LOAD 5
3 e  LOAD 6
4 b  ADD 5

cycle: 1 2 3 4
ready: a c e g b
active: a c e
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done
1 a  LOAD 4
2 c  LOAD 5
3 e  LOAD 6
4 b  ADD 5
5 d  MULT 7

cycle: 1 2 3 4 5
ready: a c e g b d
active: a c e b
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done
1 a  LOAD 4
2 c  LOAD 5
3 e  LOAD 6
4 b  ADD 5
5 d  MULT 7
6 g  LOAD 9

cycle: 1 2 3 4 5 6
ready: a c e g b d
active: a c e b d

3

5

87

109

1210

13



Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done
1 a  LOAD 4
2 c  LOAD 5
3 e  LOAD 6
4 b  ADD 5
5 d  MULT 7
6 g  LOAD 9
7 f  MULT 9

cycle: 1 2 3 4 5 6 7
ready: a c e g b d f 
active: a c e b d g
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done
1 a  LOAD 4
2 c  LOAD 5
3 e  LOAD 6
4 b  ADD 5
5 d  MULT 7
6 g  LOAD 9
7 f  MULT 9
8 ---

cycle: 1 2 3 4 5 6 7 8
ready: a c e g b d f
active: a c e b d g f
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done
1 a  LOAD 4
2 c  LOAD 5
3 e  LOAD 6
4 b  ADD 5
5 d  MULT 7
6 g  LOAD 9
7 f  MULT 9
8 ---
9 h  MULT 11

cycle: 1 2 3 4 5 6 7 8 9
ready: a c e g b d f h
active: a c e b d g f
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done
1 a  LOAD 4
2 c  LOAD 5
3 e  LOAD 6
4 b  ADD 5
5 d  MULT 7
6 g  LOAD 9
7 f  MULT 9
8 ---
9 h  MULT 11
10 ---

cycle: 1 2 3 4 5 6 7 8 9 10
ready: a c e g b d f h
active: a c e b d g f h
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Example
• Code

a  LOAD  r1 <- w
b  ADD r1 <- r1,r1
c  LOAD r2 <- x
d  MULT r1 <- r1,r2
e  LOAD r2 <- y
f   MULT r1 <- r1,r2
g  LOAD r2 <- z
h  MULT r1 <- r1,r2
i STORE w <- r1
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#  instr done
1 a  LOAD 4
2 c  LOAD 5
3 e  LOAD 6
4 b  ADD 5
5 d  MULT 7
6 g  LOAD 9
7 f  MULT 9
8 ---
9 h  MULT 11
10 ---
11 i STORE 14

cycle: 1 2 3 4 5 6 7 8 9 10 11
ready: a c e g b d f h i
active: a c e b d g f h
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Forward vs Backwards

• Alternative: backward list scheduling
– Work from the root to the leaves
– Schedules instrs from end to beginning of the block

• In practice, compilers try both and pick the result 
that minimizes costs
– Little extra expense since the precedence graph and 

other information can be reused
– Different directions win in different cases

• Optimal alg possible?  Yes, but NP-hard for 
realistic machine models
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Beyond Basic Blocks

• List scheduling dominates, but moving beyond 
basic blocks can improve quality of the code.  
Some possibilities:
– Schedule extended basic blocks (tree-like subgraph)
• Watch for exit points – limits reordering or requires 

compensating
– Trace scheduling
• Use profiling information to select regions for 

scheduling using traces (paths) through code
– Optimize schedules for high-frequency paths
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Agenda

• Survey major pieces of a compiler back end
– Instruction selection
– Instruction scheduling
– Register allocation

• And three particularly neat algorithms
– Instruction selection by tree pattern matching
– Instruction list scheduling
– Register allocation by graph coloring
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Register Allocation by Graph Coloring

• Convert the (seemingly) infinite sequence of 
temporary data references, t1, t2, … into 
assignments to finite number of actual registers

• Goal: Use available registers with minimum 
spilling

• Problem: Minimizing the number of registers is 
NP-complete … it is equivalent to chromatic 
number – minimum colors needed to color nodes 
of a graph so no edge connects same color
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Begin With Data Flow Graph

• procedure-wide register allocation
• only live variables require register storage

• two variables (values) interfere when their live 
ranges overlap
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dataflow analysis: a variable is live at node N if 
the value it holds is used on some path further 

down the control-flow graph; otherwise it is dead



Live Variable Analysis
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a := read();
b := read();
c := read();
d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e

e

a
b

d

a := read();
b := read();
c := read();
d := a + b*c;
if (d < 10 ) then

e := c+8;
print(c);

else
f := 10;
e := f + d;
print(f);

fi
print(e);



Register Interference Graph
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a := read();
b := read();
c := read();
d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e

e

a
b

a b

e

dc

f

d



Graph Coloring

• NP complete problem

• Heuristic: color easy nodes last
– find node N with lowest degree
– remove N from the graph
– color the simplified graph 
– set color of N to the first color that is not used by any 

of N ’s neighbors
• Basics due to Chaitin (1982), refined by Briggs 

(1992)
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Apply Heuristic
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Apply Heuristic
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Final Assignment
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a b

e

dc

f

a := read();
b := read();
c := read();
d := a + b*c;
if (d < 10 ) then

e := c+8;
print(c);

else
f := 10;
e := f + d;
print(f);

fi
print(e);



Some Graph Coloring Issues

• May run out of registers
– Solution: insert spill code and reallocate

• Special-purpose and dedicated registers
– Examples: function return register, function 

argument registers, registers required for 
particular instructions

– Solution: “pre-color” some nodes to force 
allocation to a particular register
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Exercise

given that a and b are live on entry and dead on exit,
and that x and y are live on exit:
(a) construct the register interference graph
(b) color the graph; how many registers are needed?
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{
int tmp_2ab = 2*a*b;
int tmp_aa = a*a;
int tmp_bb = b*b;

x := tmp_aa + tmp_2ab + tmp_bb;
y := tmp_aa - tmp_2ab + tmp_bb;

}



4 Registers Needed
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a tmp_2ab

tmp_bb

x y

tmp_aab



Live Ranges
• Real graph-coloring register allocators don’t allocate 

temp registers – they allocate live ranges
• A live range 

– In a basic block is the interval between a defn and last use
– In a CFG, similar but more complex; e.g. see Q-61,62. Net is a 

coherent set of definitions and uses.
– Every definition can reach every use
– Every use that a definition can reach is in the same live range

• Idea: disjoint uses of a variable in different parts of the 
program don’t actually interfere, ∴ in separate live ranges
– So we build a SSA form of the IR to construct the interference 

graph!
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Live Ranges: Example
1. loadi …    ® rfp
2. loadai rfp, 0 ® rw
3. loadi 2 ® r2
4. loadai rfp,xoffset ® rx
5. loadai rfp,yoffset ® ry
6. loadai rfp,zoffset ® rz
7. mult rw, r2 ® rw
8. mult rw, rx ® rw
9. mult rw, ry ® rw
10. mult rw, rz ® rw
11. storeai rw ® rfp, 0

Register   Interval
rfp [1,11]
rw [2,7]
rw [7,8]
rw [8,9]
rw [9,10]
rw [10,11]
r2 [3,7]
rx [4,8]
ry [5,9]
rz [6,10]
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Coalescing Live Ranges

• Idea: if two live ranges are connected by a 
copy operation (MOV ri ® rj) but do not 
otherwise interfere, then the live ranges can 
be coalesced (combined)
– Rewrite all references to rj to use ri
– Remove the copy instruction

• Then need to fix up interference graph
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Advantages?

• Makes the code smaller, faster (no copy 
operation)

• Shrinks set of live ranges
• Reduces the degree of any live range that 

interfered with both live ranges ri, rj
• But: coalescing two live ranges can prevent 

coalescing of others, so ordering matters
– Best: Coalesce most frequently executed ranges first 

(e.g., inner loops)
• Can have a substantial payoff – do it!
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Graph Representation

• The interference graph representation drives the 
time and space requirements for the allocator 
(and maybe the compiler)

• Not unknown to have O(5K) nodes and O(1M) 
edges

• Dual representation works best
– Triangular bit matrix for efficient access to 

interference information
– Vector of adjacency vectors for efficient access to 

node neighbors

UW CSE 401/M501 Spring 2022 Q-89



Overall Structure

• Then you may want to iterate with additional instruction selection 
and scheduling passes, particularly on a complex machine where 
operations can have both memory or register operands (e.g., x86)
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Find live 
ranges

Build int. 
graph Coalesce Spill 

Costs
Find 

Coloring

Insert 
Spills

No Spills

More Coalescing Possible

Spills



And that’s it!

Modulo all the picky details, that is…
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