CSE 401/M501 – Compilers

SSA (Static Single Assignment)

Spring 2022

Administrivia

- CSE 401 codegen due Thursday night
 - How's it going?
- Once codegen is done we'll do an overall evaluation of your compiler, all phases, and rerun a comprehensive set of tests. This final evaluation is *the* major part of the project grade. So, you need to fix any remaining bugs, all the way back to the scanner!
- Project report for CSE 401 due next Tuesday.
- M 501: extra work, different schedule see web

Agenda

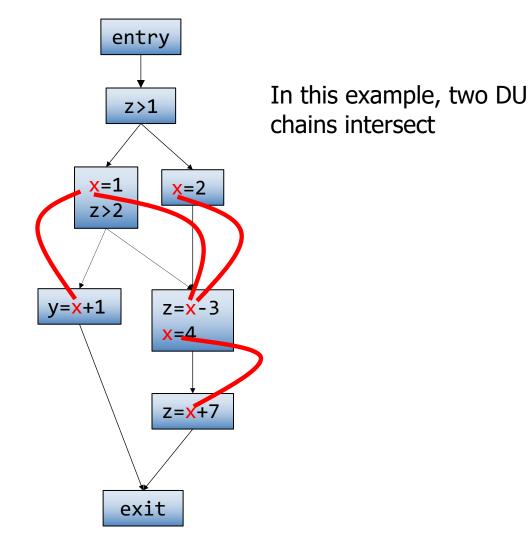
- Overview of SSA IR
 - Constructing SSA graphs
 - Sample of SSA-based optimizations
 - Converting back from SSA form

• Sources: Appel ch. 19, also an extended discussion in Cooper-Torczon sec. 9.3; Mike Ringenburg's CSE 401 slides

Def-Use (DU) Chains

- Common dataflow analysis problem: Find all sites where a variable is used, or find all definition site(s) of a variable used in an expression
- Traditional solution: def-use chains additional data structure on top of the dataflow graph
 - Link each statement defining a variable to all statements that (potentially) use it
 - Link each use of a variable to all (potential) definition(s)

Def-Use (DU) Chains



DU-Chain Drawbacks

- Expensive: if a typical variable has N uses and M definitions, the total cost *per-variable* is O(N * M), i.e., O(n²)
 - Would be nice if cost were proportional to the size of the program, not the square of the size
- Unrelated uses of the same variable are mixed together
 - Complicates analysis variable looks live across all uses even if unrelated

SSA: Static Single Assignment

- IR where each variable has only one definition in the program text
 - This is a single *static* definition, but that definition can be in a loop, function, or other code that is executed dynamically many times
- Makes many analyses (and related optimizations) more efficient
- Separates values from memory storage locations
- Complementary to CFG/DFG better for some things, but cannot do everything

SSA Within Basic Blocks

Idea: for each original variable v, create a new variable v_n at the nth definition of the original v. Subsequent uses of v use v_n until the next definition point.

 Original 	• SSA
a := x + y	a ₁ := x + y
b := a – 1	b ₁ := a ₁ – 1
a := y + b	a ₂ := y + b ₁
b := x * 4	b ₂ := x * 4
a := a + b	a ₃ := a ₂ + b ₂

SSA Across Basic Blocks–Merge Points

• The issue is how to handle merge points

if (...)

$$a = x;$$
 if (...)

 $a = x;$
 $a_1 = x;$

 else
 $a_2 = y;$
 $b = a;$
 $b_1 = ??;$

SSA Across Basic Blocks–Merge Points

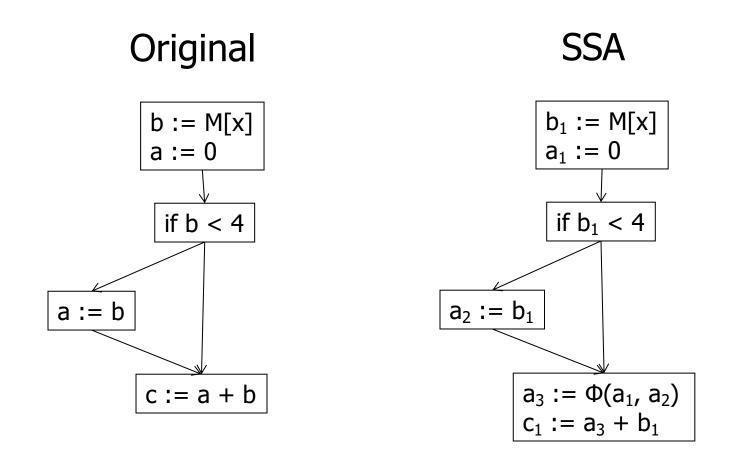
• The issue is how to handle merge points

Solution: introduce a Φ-function

 $\mathsf{a}_3 := \Phi(\mathsf{a}_1, \, \mathsf{a}_2)$

• Meaning: a_3 is assigned either a_1 or a_2 depending on which control path is used to reach the Φ -function

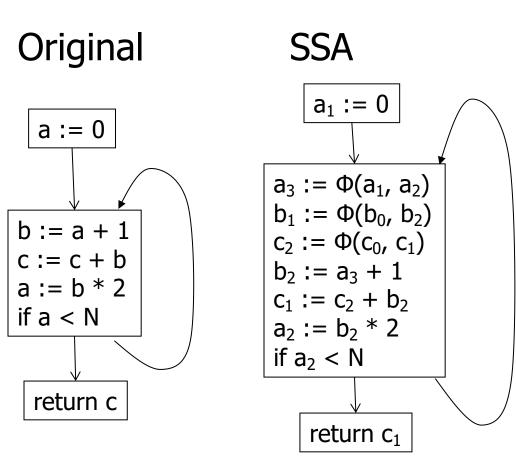
Another Example



How Does Φ "Know" What to Pick?

- It doesn't !
- Φ-functions don't actually exist at runtime
 - When we're done using the SSA IR, we translate back out of SSA form, removing all Φ-functions
 - Basically by adding code to copy all SSA x_i values to the single, non-SSA variable x
 - For analysis, all we typically need to know is the connection of uses to definitions – no need to "execute" anything
 - So Φ-functons are (only) compile-time bookkeeping

Example With a Loop



Notes:

Loop-back edges are also merge points, so require Φ-functions
•a₀, b₀, c₀ are initial values of a, b, c on entry to initial block
•b₁ is dead – can delete later
•C, N are live on entry – either input parameters or uninitialized

What does SSA "buy" us?

- No need for DU or UD chains implicit in SSA
- Compact representation
- SSA is "recent" (i.e., 80s)
- Prevalent in real compilers for { } languages

Converting To SSA Form

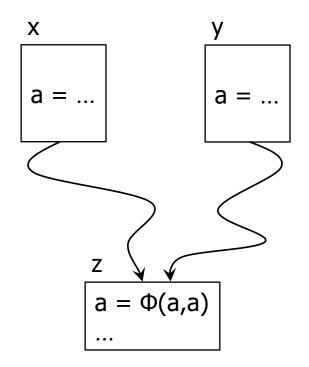
- Basic idea
 - First, add Φ-functions
 - Then, rename all definitions and uses of variables by adding subscripts

Inserting Φ-Functions

- Could simply add Φ-functions for every variable at every join point(!)
- Called "maximal SSA"
- But
 - Not needed in many cases
 - Wastes way too much space and time

Path-convergence criterion

- Insert a Φ-function for variable *a* at point z when:
 - There are blocks x and y,
 both containing definitions
 of a, and x ≠ y
 - There are nonempty paths
 from x to z and from y to z
 - These paths have no common nodes other than z

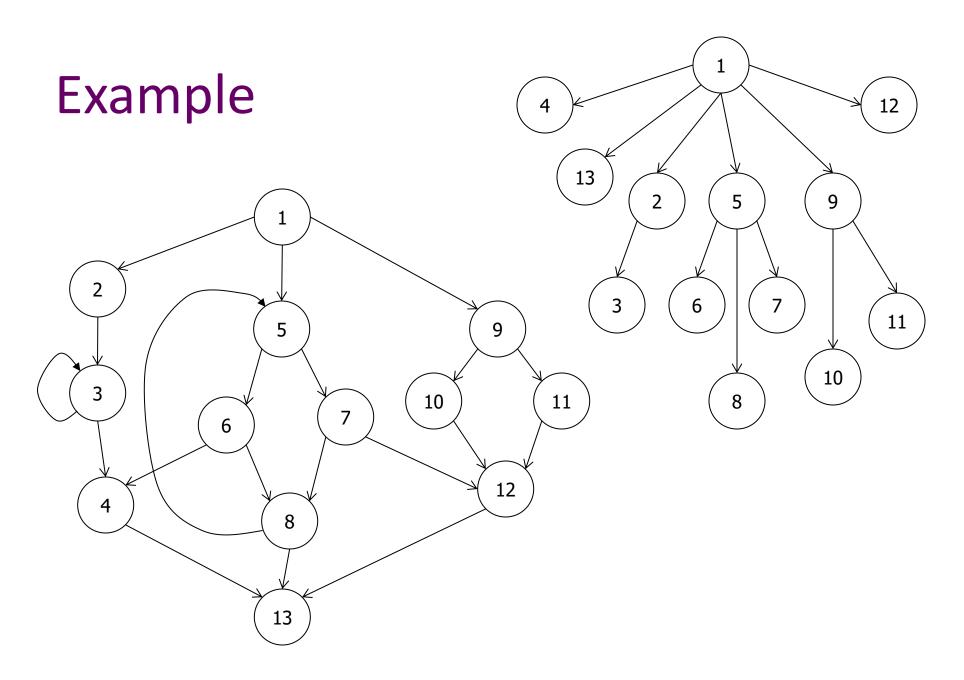


Details

- The start node of the flow graph is considered to define every variable (even if "undefined")
- Each Φ-function itself defines a variable, which may create the need for a new Φ-function
 - So we need to keep adding Φ-functions until things converge
- How can we do this efficiently?
 Use a new concept: dominance frontiers

Dominators

- Definition: a block x *dominates* a block y iff every path from the entry of the control-flow graph to y includes x
- So, by definition, x dominates x
- We can associate a Dom(inator) set with each CFG node x – set of all blocks dominated by x
 | Dom(x) | ≥ 1
- Properties:
 - Transitive: if a dom b and b dom c, then a dom c
 - There are no cycles, thus can represent the dominator relationship as a tree



Dominators and SSA

- One property of SSA is that definitions dominate uses; more specifically:
 - If $x := \Phi(x_1, x_2, ..., x_i, ...)$ is in block b, then the definition of x_i dominates the ith predecessor of b
 - If x is used in a non-Φ statement in block b, then the definition of x dominates block b

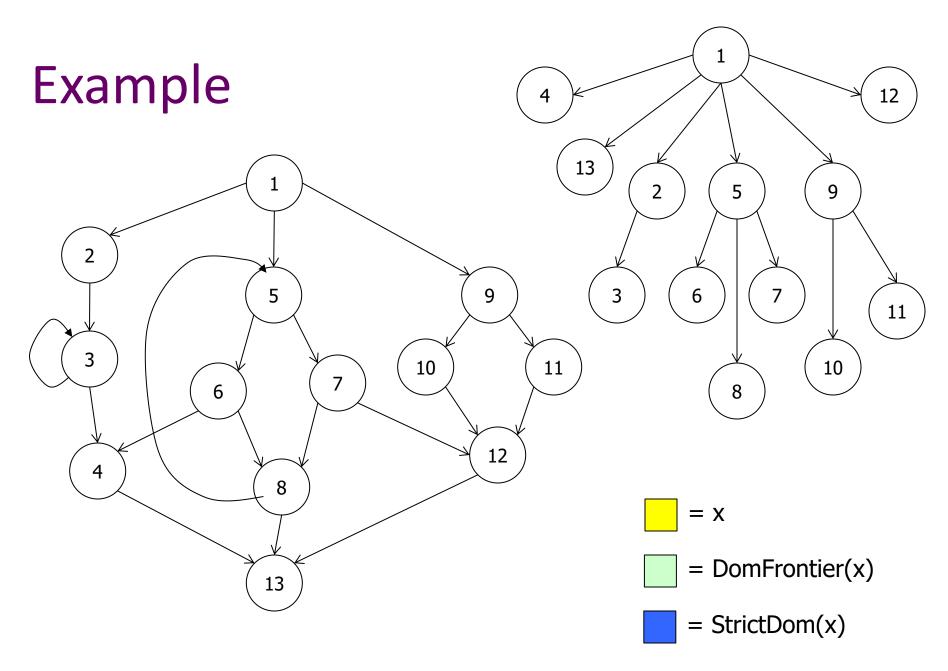
Dominance Frontier (1)

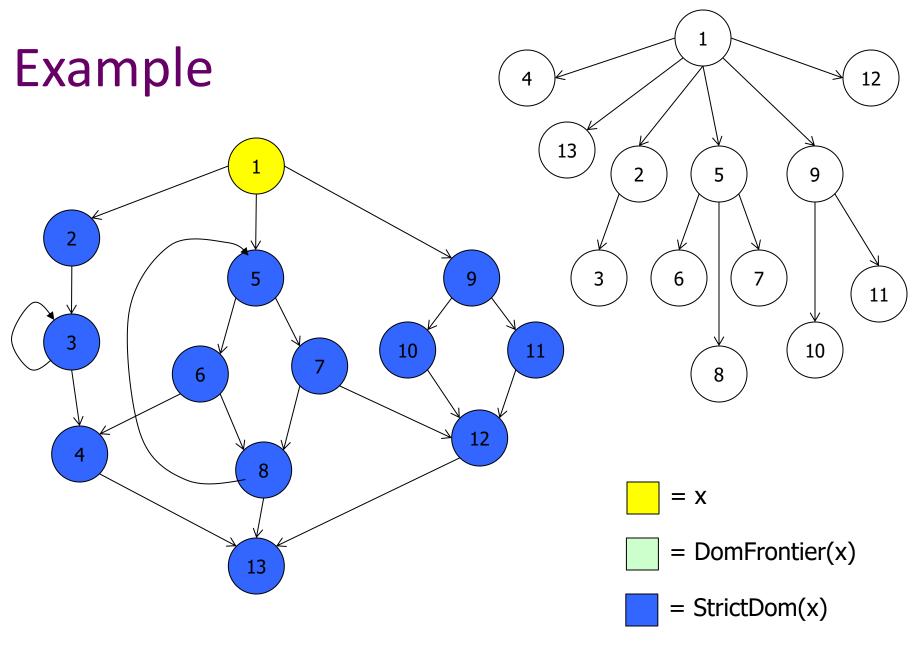
- To get a practical algorithm for placing Φfunctions, we need to avoid looking at all combinations of nodes leading from x to y
- Instead, use the dominator tree of the flow graph

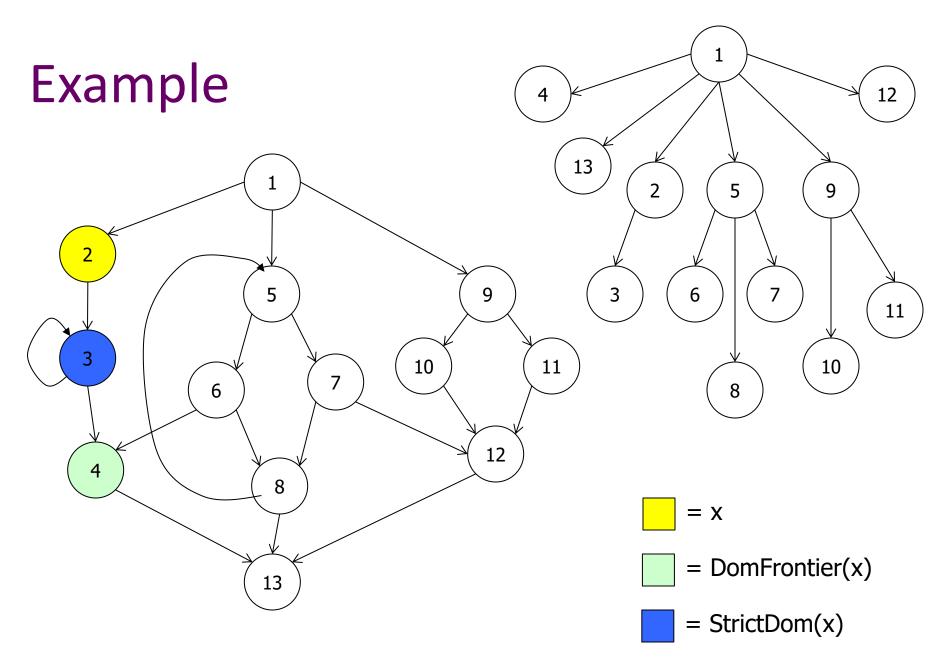
Dominance Frontier (2)

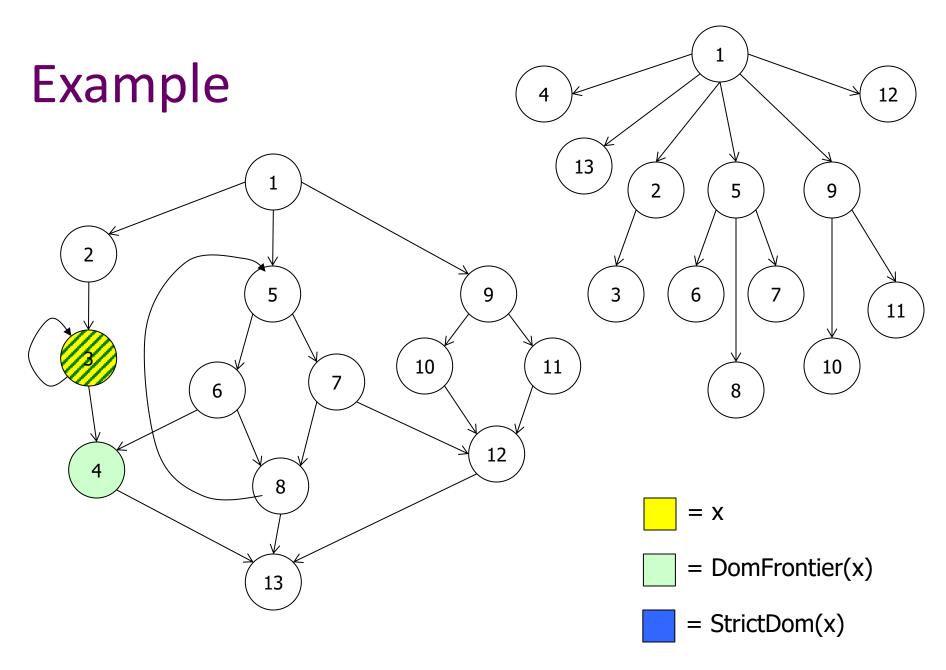
x p p p

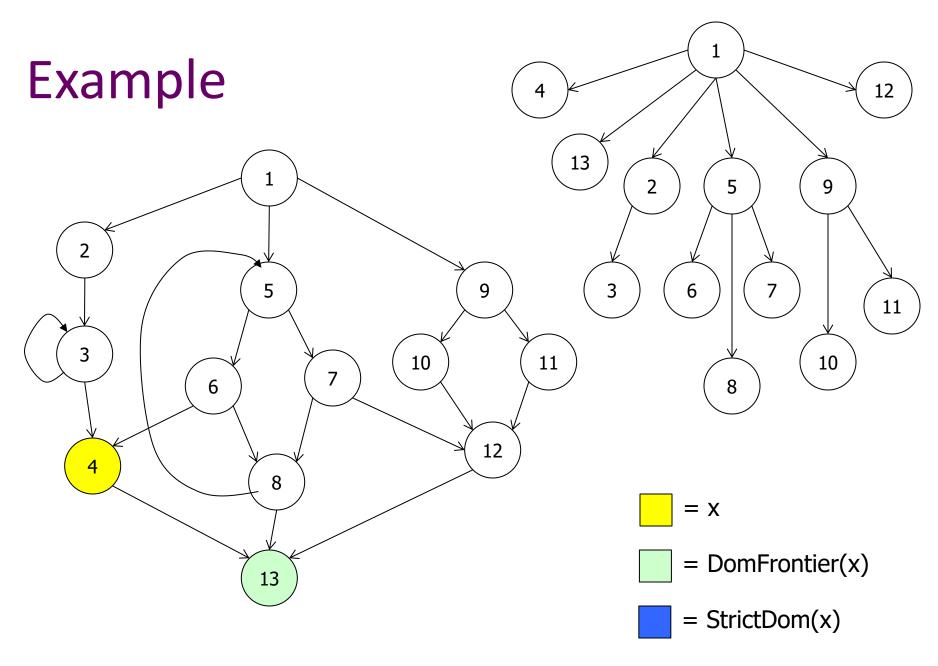
- Definitions
 - x *strictly dominates* y if x dominates y and $x \neq y$
 - The *dominance frontier* of a node x is the set of all nodes w such that x dominates a predecessor p of w, but x does not strictly dominate w
 - ∴ if x and w are different, then x does not dominate w there is some other path to w that does not go through x
 - But x can be in *it's own* dominance frontier! That can happen if there is a back edge to x from some node that x dominates (i.e., x is the head of a loop)
- Essentially, the dominance frontier is the border between dominated and undominated nodes



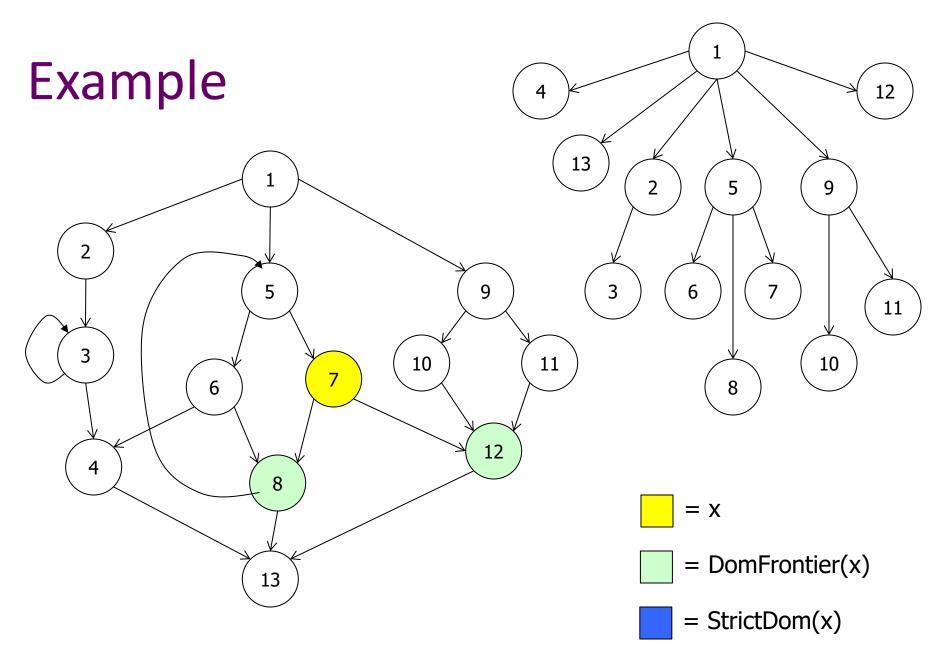


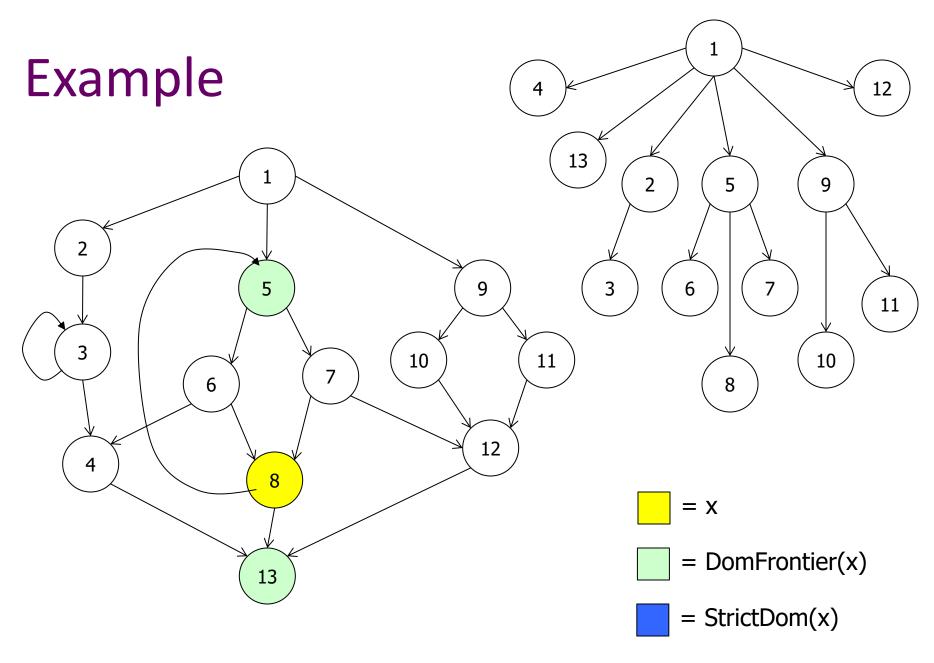


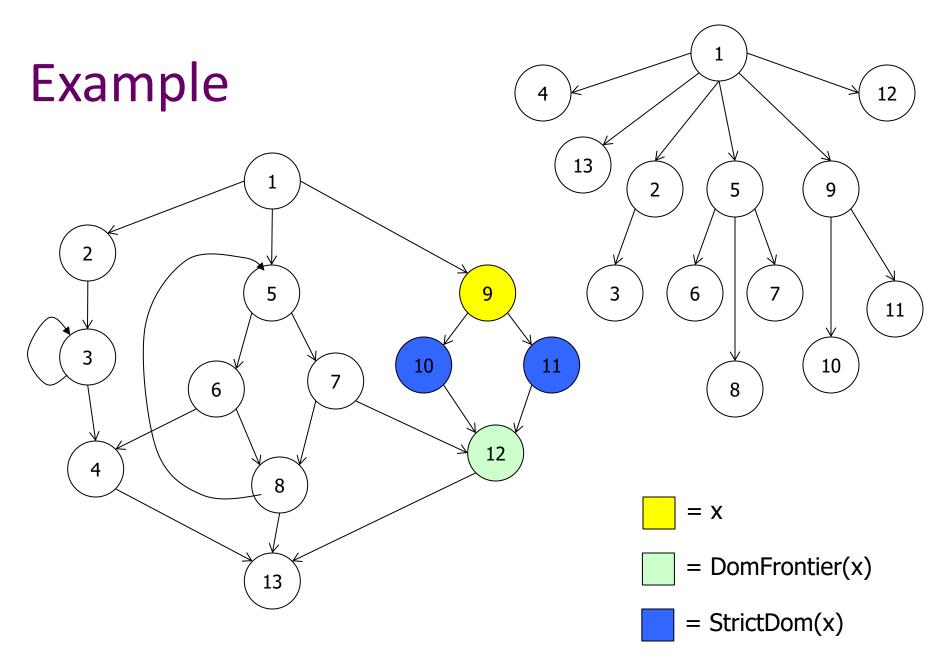


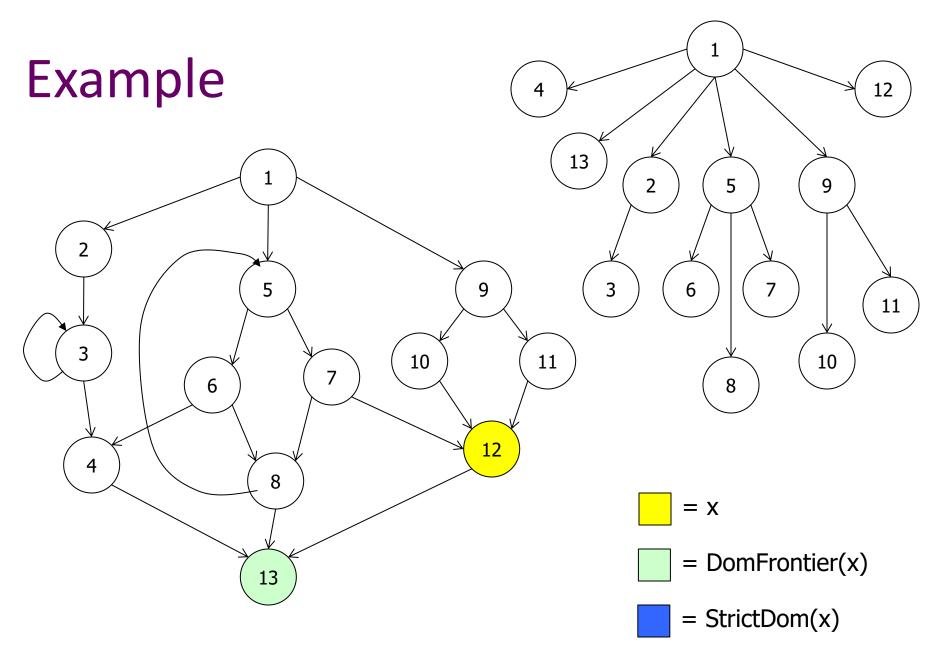


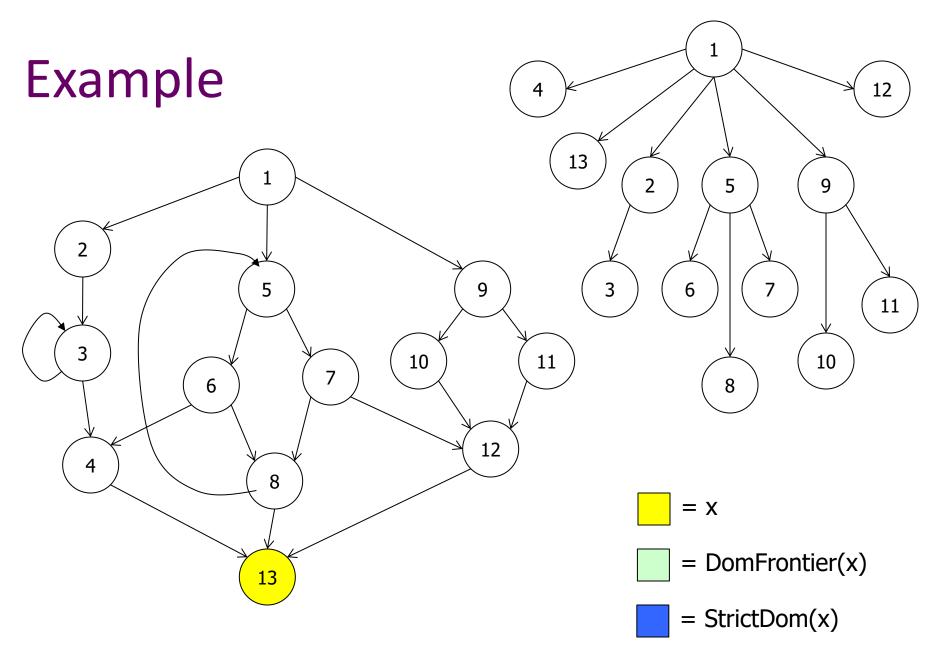




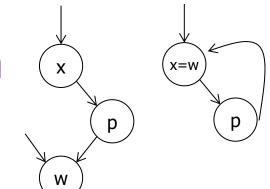








Dominance Frontier Criterion for Placing Φ-Functions



- If a node x contains the definition of variable *a*, then every node in the dominance frontier of x needs a Φ-function for *a*
 - Idea: Everything dominated by x will see x's definition of a. The dominance frontier represents the first nodes we could have reached via an alternative path, which will have an alternate reaching definition of a (recall the convention that the entry node defines all variables with version 0 - a_0)
 - Why is this right for loops? Hint: strict dominance...
 - Since the Φ-function itself is a definition, this placement rule needs to be iterated until it reaches a fixed-point
- Theorem: this algorithm places exactly the same set of Φ-functions as the path convergence criterion (above)

Placing Φ-Functions: Details

- See the book for the full construction, but the basic steps are:
 - 1. Compute the dominance frontiers for each node in the flowgraph
 - Insert just enough Φ-functions to satisfy the criterion. Use a worklist algorithm to avoid reexamining nodes unnecessarily
 - Walk the dominator tree and rename the different definitions of each variable *a* to be a₁, a₂, a₃, ...

SSA Optimizations

- Why go to the trouble of translating to SSA?
- The advantage of SSA is that it makes many optimizations and analyses simpler and more efficient
 - We'll give a couple of examples
- But first, what do we know? (i.e., what information is stored in the compiler SSA graph data structures?)

SSA Data Structures

For each ...

- Statement: links to containing block, next and previous statements, variables defined, variables used
- Variable: link to its (single) definition and (possibly multiple) use sites
- Block: List of contained statements, ordered list of predecessor(s) & successor(s) blocks

Dead-Code Elimination

- A variable is live ⇔ its list of uses is not empty(!)
 - That's it! Nothing further to compute
- Algorithm to delete dead code:

while there is some variable v with no uses

if the statement that defines v has no other side effects, then delete it and remove this statement from list of uses for its operand variables - which may cause those variables to become dead

Simple Constant Propagation

 If c is a constant in v := c, any use of v can be replaced by c

So update every use of v to use constant c

- If the c_i's in v := Φ(c₁, c₂, ..., c_n) are all the same constant c, we can replace this with v := c
- Incorporate copy propagation, constant folding, and others in the same worklist algorithm

Simple Constant Propagation

```
W := list of all statements in SSA program
while W is not empty
  remove some statement S from W
  if S is v:=\Phi(c, c, ..., c), replace S with v:=c
  if S is v := c_1 op c_2, replace S with v := c_1
  if S is v := c
    delete S from the program
    for each statement T that uses v
       substitute c for v in T
       add T to W
```

Converting Back from SSA

- Unfortunately, real machines do not include a Φ instruction
- So after analysis, optimization, and transformation, need to convert back to a "Φ-less" form for execution
 - (Also sometimes needed for different kinds of analysis or transformation. A production optimizer might convert the IR into and out of SSA form multiple times)

Translating Φ-functions

- The meaning of x := Φ(x₁, x₂, ..., x_n) is "set x = x₁ if arriving on predecessor block edge 1, set x = x₂ if arriving on edge 2, etc."
- So, for each i, insert x = x_i at the end of predecessor block i
- Rely on copy propagation and coalescing in register allocation to eliminate redundant copy instructions

SSA Wrapup

- More details needed to fully and efficiently implement SSA, but these are the main ideas
 - See recent compiler books (but not the Dragon book!)
- Allows efficient implementation of many optimizations
- SSA is used in most modern optimizing compilers (llvm is based on it) and has been retrofitted into many older ones (gcc is a major example)
- Not a silver bullet some optimizations still need non-SSA forms – but very effective for many