
CSE 401/M501 – Compilers

SSA (Static Single Assignment)

Spring 2022

Administrivia

• CSE 401 codegen due Thursday night
– How’s it going?

• Once codegen is done we’ll do an overall evaluation of
your compiler, all phases, and rerun a comprehensive
set of tests. This final evaluation is the major part of the
project grade. So, you need to fix any remaining bugs,
all the way back to the scanner! 🐛🕷🐜🦂🐞

• Project report for CSE 401 due next Tuesday.
• M 501: extra work, different schedule – see web

UW CSE 401/M501 Spring 2022 P-2

Agenda

• Overview of SSA IR
– Constructing SSA graphs
– Sample of SSA-based optimizations
– Converting back from SSA form

• Sources: Appel ch. 19, also an extended discussion in Cooper-Torczon
sec. 9.3; Mike Ringenburg’s CSE 401 slides

UW CSE 401/M501 Spring 2022 P-5

Def-Use (DU) Chains

• Common dataflow analysis problem: Find all sites
where a variable is used, or find all definition
site(s) of a variable used in an expression

• Traditional solution: def-use chains – additional
data structure on top of the dataflow graph
– Link each statement defining a variable to all

statements that (potentially) use it
– Link each use of a variable to all (potential)

definition(s)

UW CSE 401/M501 Spring 2022 P-6

Def-Use (DU) Chains

UW CSE 401/M501 Spring 2022 P-7

z>1

x=1
z>2

x=2

z=x-3
x=4

z=x+7

y=x+1

exit

entry

In this example, two DU
chains intersect

DU-Chain Drawbacks

• Expensive: if a typical variable has N uses and
M definitions, the total cost per-variable is
O(N * M), i.e., O(n2)
– Would be nice if cost were proportional to the size

of the program, not the square of the size

• Unrelated uses of the same variable are mixed
together
– Complicates analysis – variable looks live across

all uses even if unrelated

UW CSE 401/M501 Spring 2022 P-8

SSA: Static Single Assignment

• IR where each variable has only one definition in
the program text
– This is a single static definition, but that definition can

be in a loop, function, or other code that is executed
dynamically many times

• Makes many analyses (and related optimizations)
more efficient

• Separates values from memory storage locations
• Complementary to CFG/DFG – better for some

things, but cannot do everything

UW CSE 401/M501 Spring 2022 P-9

SSA Within Basic Blocks

• Original
a := x + y
b := a – 1
a := y + b
b := x * 4
a := a + b

• SSA
a1 := x + y
b1 := a1 – 1
a2 := y + b1

b2 := x * 4
a3 := a2 + b2

UW CSE 401/M501 Spring 2022 P-10

Idea: for each original variable v, create a new variable
vn at the nth definition of the original v. Subsequent
uses of v use vn until the next definition point.

SSA Across Basic Blocks–Merge Points

• The issue is how to handle merge points

UW CSE 401/M501 Spring 2022 P-11

if (…)
a = x;

else
a = y;

b = a;

if (…)
a1 = x;

else
a2 = y;

b1 = ??;

SSA Across Basic Blocks–Merge Points

• The issue is how to handle merge points

• Solution: introduce a Φ-function
a3 := Φ(a1, a2)

• Meaning: a3 is assigned either a1or a2 depending on
which control path is used to reach the Φ-function

UW CSE 401/M501 Spring 2022 P-12

if (…)
a = x;

else
a = y;

b = a;

if (…)
a1 = x;

else
a2 = y;

a3 =Φ(a1, a2);
b1 = a3;

Another Example

UW CSE 401/M501 Spring 2022 P-13

b := M[x]
a := 0

if b < 4

a := b

c := a + b

Original

b1 := M[x]
a1 := 0

if b1 < 4

a2 := b1

a3 := Φ(a1, a2)
c1 := a3 + b1

SSA

How Does Φ “Know” What to Pick?

• It doesn’t !
• Φ-functions don’t actually exist at runtime
– When we’re done using the SSA IR, we translate

back out of SSA form, removing all Φ-functions
• Basically by adding code to copy all SSA xi values to the

single, non-SSA variable x

– For analysis, all we typically need to know is the
connection of uses to definitions – no need to
“execute” anything
• So Φ-functons are (only) compile-time bookkeeping

UW CSE 401/M501 Spring 2022 P-14

Example With a Loop

UW CSE 401/M501 Spring 2022 P-15

a := 0

b := a + 1
c := c + b
a := b * 2
if a < N

return c

Original
a1 := 0

a3 := Φ(a1, a2)
b1 := Φ(b0, b2)
c2 := Φ(c0, c1)
b2 := a3 + 1
c1 := c2 + b2
a2 := b2 * 2
if a2 < N

return c1

SSA
Notes:
•Loop-back edges are
also merge points, so
require Φ-functions
•a0, b0, c0 are initial
values of a, b, c on
entry to initial block
•b1 is dead – can
delete later
•C, N are live on entry –
either input parameters
or uninitialized

What does SSA “buy” us?

• No need for DU or UD chains – implicit in SSA

• Compact representation

• SSA is “recent” (i.e., 80s)

• Prevalent in real compilers for { } languages

UW CSE 401/M501 Spring 2022 P-16

Converting To SSA Form

• Basic idea
– First, add Φ-functions
– Then, rename all definitions and uses of variables

by adding subscripts

UW CSE 401/M501 Spring 2022 P-17

Inserting Φ-Functions

• Could simply add Φ-functions for every
variable at every join point(!)

• Called “maximal SSA”
• But
– Not needed in many cases
– Wastes way too much space and time

UW CSE 401/M501 Spring 2022 P-18

Path-convergence criterion

• Insert a Φ-function for
variable a at point z when:
– There are blocks x and y,

both containing definitions
of a, and x ¹ y

– There are nonempty paths
from x to z and from y to z

– These paths have no
common nodes other than z

UW CSE 401/M501 Spring 2022 P-19

x

a = …

y

a = …

z
a = Φ(a,a)
…

Details

• The start node of the flow graph is considered
to define every variable (even if “undefined”)

• Each Φ-function itself defines a variable,
which may create the need for a new
Φ-function
– So we need to keep adding Φ-functions until

things converge
• How can we do this efficiently?

Use a new concept: dominance frontiers

UW CSE 401/M501 Spring 2022 P-20

Dominators

• Definition: a block x dominates a block y iff every
path from the entry of the control-flow graph to y
includes x

• So, by definition, x dominates x
• We can associate a Dom(inator) set with each

CFG node x – set of all blocks dominated by x
| Dom(x) | ≥ 1

• Properties:
– Transitive: if a dom b and b dom c, then a dom c
– There are no cycles, thus can represent the dominator

relationship as a tree

UW CSE 401/M501 Spring 2022 P-21

Example

UW CSE 401/M501 Spring 2022 P-22

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

Dominators and SSA

• One property of SSA is that definitions
dominate uses; more specifically:
– If x := Φ(x1, x2,…,xi,…) is in block b, then the

definition of xi dominates the ith predecessor of b
– If x is used in a non-Φ statement in block b, then

the definition of x dominates block b

UW CSE 401/M501 Spring 2022 P-23

Dominance Frontier (1)

• To get a practical algorithm for placing Φ-
functions, we need to avoid looking at all
combinations of nodes leading from x to y

• Instead, use the dominator tree of the flow
graph

UW CSE 401/M501 Spring 2022 P-24

Dominance Frontier (2)

• Definitions
– x strictly dominates y if x dominates y and x ¹ y
– The dominance frontier of a node x is the set of all

nodes w such that x dominates a predecessor p of w,
but x does not strictly dominate w
• ∴ if x and w are different, then x does not dominate w –

there is some other path to w that does not go through x
• But x can be in it’s own dominance frontier! That can

happen if there is a back edge to x from some node that x
dominates (i.e., x is the head of a loop)

• Essentially, the dominance frontier is the border
between dominated and undominated nodes

UW CSE 401/M501 Spring 2022 P-25

x=w

p

x

p

w

Example

UW CSE 401/M501 Spring 2022 P-26

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE 401/M501 Spring 2022 P-27

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE 401/M501 Spring 2022 P-28

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE 401/M501 Spring 2022 P-29

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE 401/M501 Spring 2022 P-30

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE 401/M501 Spring 2022 P-31

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE 401/M501 Spring 2022 P-32

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE 401/M501 Spring 2022 P-33

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE 401/M501 Spring 2022 P-34

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE 401/M501 Spring 2022 P-35

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Example

UW CSE 401/M501 Spring 2022 P-36

1

2

3

4

13

5

6 7

8

9

10 11

12

1

4

13
2

3

5

6 7

8

9

12

10

11

= x

= DomFrontier(x)

= StrictDom(x)

Dominance Frontier Criterion
for Placing Φ-Functions
• If a node x contains the definition of

variable a, then every node in the
dominance frontier of x needs a Φ-function for a
– Idea: Everything dominated by x will see x’s definition of a.

The dominance frontier represents the first nodes we
could have reached via an alternative path, which will have
an alternate reaching definition of a (recall the convention
that the entry node defines all variables with version 0 - a0)
• Why is this right for loops? Hint: strict dominance…

– Since the Φ-function itself is a definition, this placement
rule needs to be iterated until it reaches a fixed-point

• Theorem: this algorithm places exactly the same set of
Φ-functions as the path convergence criterion (above)

UW CSE 401/M501 Spring 2022 P-37

x=w

p

x

p

w

Placing Φ-Functions: Details

• See the book for the full construction, but the
basic steps are:
1. Compute the dominance frontiers for each node

in the flowgraph
2. Insert just enough Φ-functions to satisfy the

criterion. Use a worklist algorithm to avoid
reexamining nodes unnecessarily

3. Walk the dominator tree and rename the
different definitions of each variable a to be a1,
a2, a3, …

UW CSE 401/M501 Spring 2022 P-38

SSA Optimizations

• Why go to the trouble of translating to SSA?
• The advantage of SSA is that it makes many

optimizations and analyses simpler and more
efficient
– We’ll give a couple of examples

• But first, what do we know? (i.e., what
information is stored in the compiler SSA
graph data structures?)

UW CSE 401/M501 Spring 2022 P-39

SSA Data Structures

For each …
• Statement: links to containing block, next and

previous statements, variables defined,
variables used

• Variable: link to its (single) definition and
(possibly multiple) use sites

• Block: List of contained statements, ordered
list of predecessor(s) & successor(s) blocks

UW CSE 401/M501 Spring 2022 P-40

Dead-Code Elimination

• A variable is live ó its list of uses is not
empty(!)
– That’s it! Nothing further to compute

• Algorithm to delete dead code:
while there is some variable v with no uses

if the statement that defines v has no
other side effects, then delete it and remove
this statement from list of uses for its operand
variables - which may cause those variables to
become dead

UW CSE 401/M501 Spring 2022 P-41

Simple Constant Propagation

• If c is a constant in v := c, any use of v can be
replaced by c
– So update every use of v to use constant c

• If the ci’s in v := Φ(c1, c2, …, cn) are all the same
constant c, we can replace this with v := c

• Incorporate copy propagation, constant
folding, and others in the same worklist
algorithm

UW CSE 401/M501 Spring 2022 P-42

Simple Constant Propagation
W := list of all statements in SSA program
while W is not empty

remove some statement S from W
if S is v:=Φ(c, c, …, c), replace S with v:=c
if S is v:= c1 op c2 , replace S with v:=c
if S is v:=c

delete S from the program
for each statement T that uses v

substitute c for v in T
add T to W

UW CSE 401/M501 Spring 2022 P-43

Converting Back from SSA

• Unfortunately, real machines do not include a
Φ instruction

• So after analysis, optimization, and
transformation, need to convert back to a
“Φ-less” form for execution
– (Also sometimes needed for different kinds of analysis or

transformation. A production optimizer might convert the
IR into and out of SSA form multiple times)

UW CSE 401/M501 Spring 2022 P-44

Translating Φ-functions

• The meaning of x := Φ(x1, x2, …, xn) is “set
x = x1 if arriving on predecessor block edge 1,
set x = x2 if arriving on edge 2, etc.”

• So, for each i, insert x = xi at the end of
predecessor block i

• Rely on copy propagation and coalescing in
register allocation to eliminate redundant
copy instructions

UW CSE 401/M501 Spring 2022 P-45

SSA Wrapup

• More details needed to fully and efficiently
implement SSA, but these are the main ideas
– See recent compiler books (but not the Dragon book!)

• Allows efficient implementation of many
optimizations

• SSA is used in most modern optimizing compilers
(llvm is based on it) and has been retrofitted into
many older ones (gcc is a major example)

• Not a silver bullet – some optimizations still need
non-SSA forms – but very effective for many

UW CSE 401/M501 Spring 2022 P-46

