CSE 401/M501 – Compilers

Dataflow Analysis

Spring 2022

Administrivia - Schedule

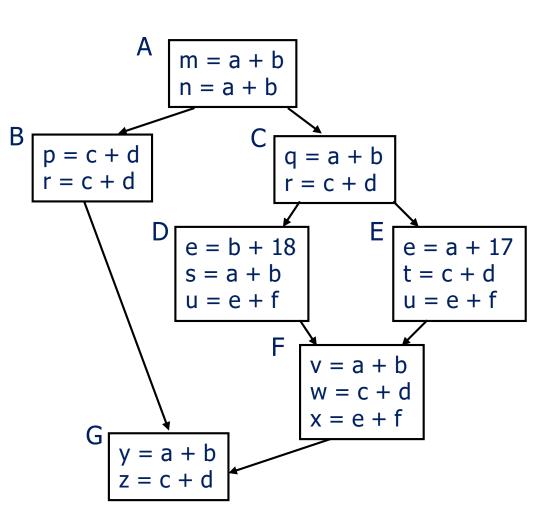
- Codegen project due Thursday, 5/26 Except
- Project Report due Tuesday, 5/31
- HW4 (data flow/SSA) out soon, due 6/2
 Limited late days!
- Final exam is Tue. 6/7, 2:30 12/14

Agenda

- Dataflow analysis: a framework and algorithm for many common compiler analyses
- Initial example: dataflow analysis for common subexpression elimination
- Then: other analysis problems that work in the same framework
- Some of these are the same analysis and optimizations we've seen, but more formally and with details

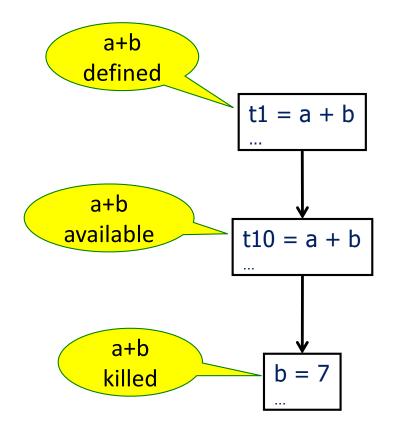
Common Subexpression Elimination

- Goal: use dataflow analysis to find common subexpressions
- Idea: calculate *available expressions* at beginning of each basic block
- Avoid re-evaluation of an available expression – use a copy operation
 - Simple inside a single block; more complex dataflow analysis used across bocks



"Available" and Other Terms

- An expression *e* is *defined* at point *p* in the CFG if its value is computed at *p*
 - Sometimes called *definition site*
- An expression e is killed at point p if one of its operands is defined at p
 - Sometimes called kill site
- An expression e is available at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p



Available Expression Sets

- To compute available expressions, for each block *b*, define
 - AVAIL(b) the set of expressions available on entry to b
 - NKILL(b) the set of expressions <u>not killed</u> in b
 - all expressions in the program *except* those killed in *b*
 - DEF(b) the set of expressions defined in b and not subsequently killed in b

Computing Available Expressions

 The set of expressions available on *entry* to b is the set of expressions that are available on *exit* from *every* predecessor x of b

 $AVAIL_{in}(b) = \bigcap_{x \in preds(b)} AVAIL_{out}(x),$

where preds(b) is the set of b's predecessors in the CFG

 The expressions available on exit from block b are those defined in b or available on entry to b and not killed in b, so

 $AVAIL(b) = \bigcap_{x \in preds(b)} (DEF(x) \cup (AVAIL(x) \cap NKILL(x)))$

This gives a system of simultaneous equations – a dataflow problem

Computing Available Expressions

- Big Picture
 - Build control-flow graph
 - Calculate initial local data DEF(b) and NKILL(b)
 - This only needs to be done once for each block b and depends only on the statements in b
 - Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
 - Another fixed-point algorithm

Computing DEF

For each block b with operations $o_1, o_2, ..., o_n$

KILLED = \emptyset // variables killed (later) in b, not expressions DEF(b) = \emptyset

for *k* = *n* to 1 // note: working back to front

```
assume o_k is "x = y + z"
```

add x to KILLED

. . .

- if (y \notin KILLED and z \notin KILLED)
 - add "y + z" to DEF(b) // i.e., neither y nor z killed // after this point in b

Computing NKILL

After computing DEF and KILLED for a block *b*, compute set of all expressions in the program not killed in *b*

NKILL(*b*) = { all expressions }

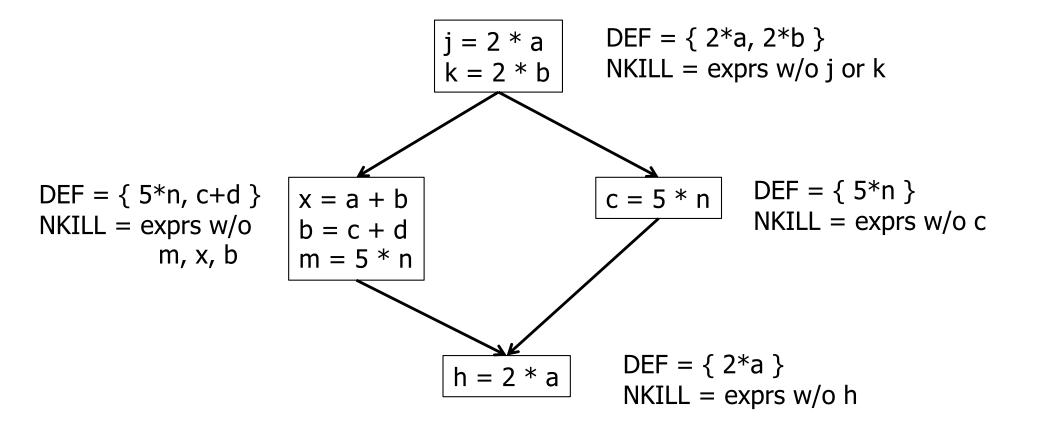
for each expression e

for each variable $v \in e$

if $v \in KILLED(b)$ then

 $\mathsf{NKILL}(b) = \mathsf{NKILL}(b) - \{e\}$

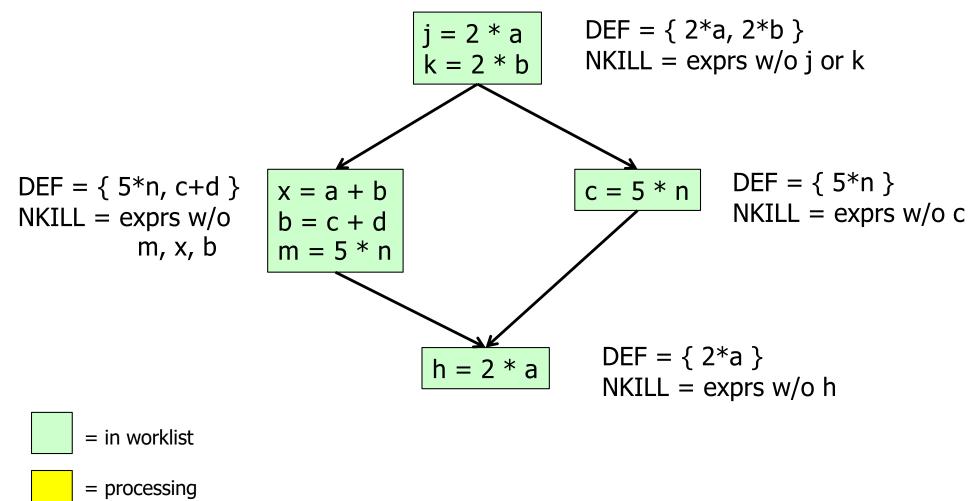
Example: Compute DEF and NKILL

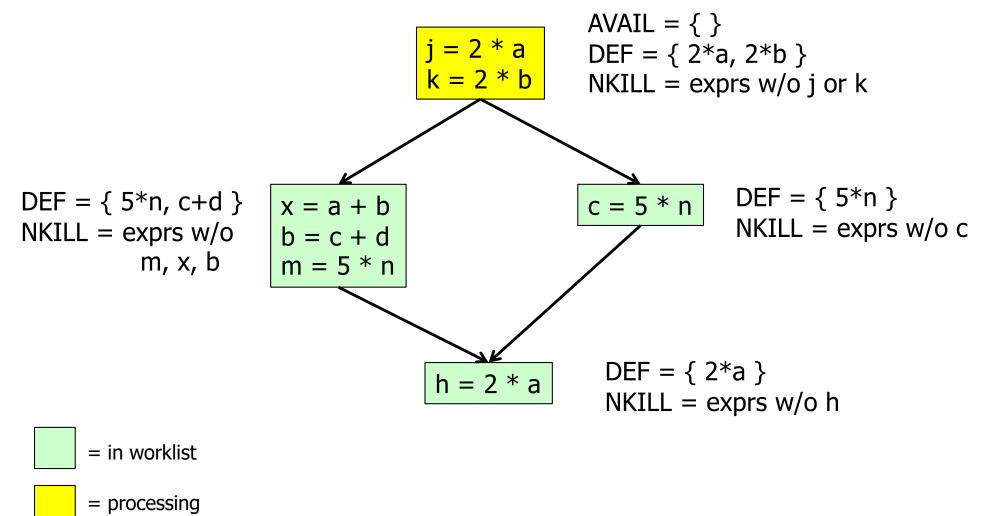


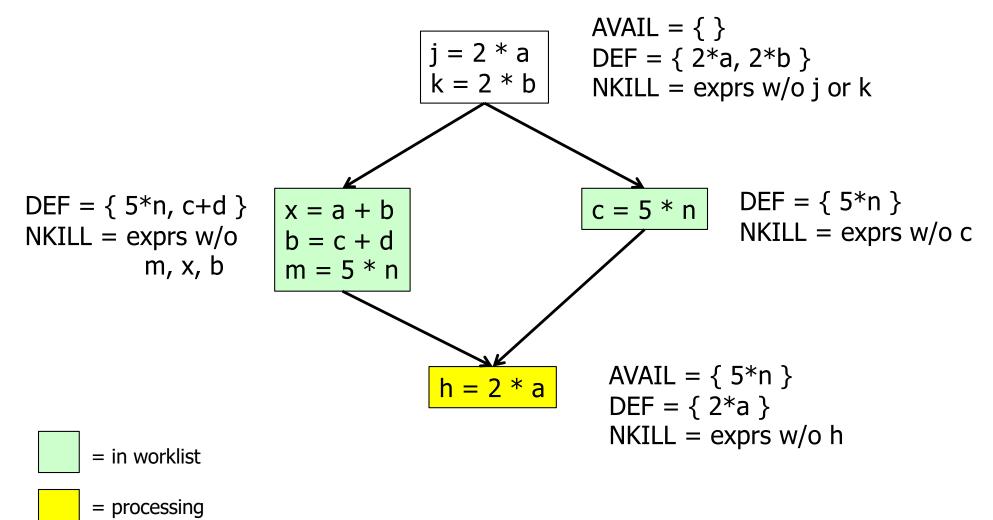
Computing Available Expressions

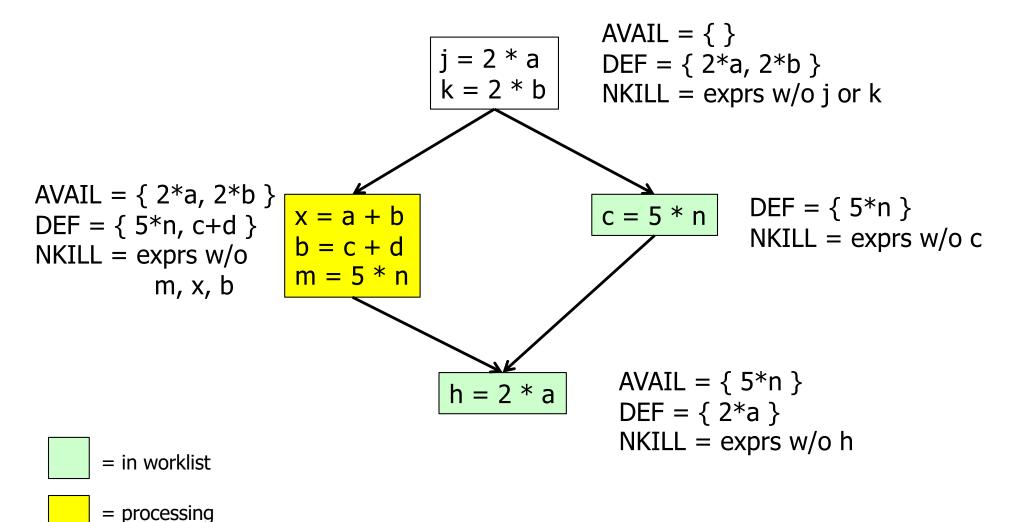
Once DEF(b) and NKILL(b) are computed for all blocks b

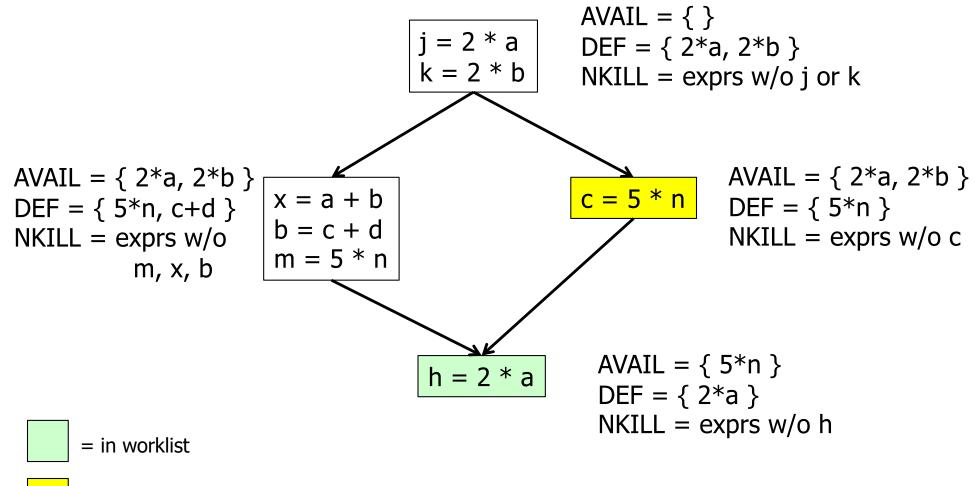
Worklist = { all blocks b_k } AVAIL $(b_k) = \emptyset$ for all blocks b_k while (Worklist $\neq \emptyset$) remove a block b from Worklist recompute AVAIL(b)if AVAIL(b) changed Worklist = Worklist \cup successors(b)

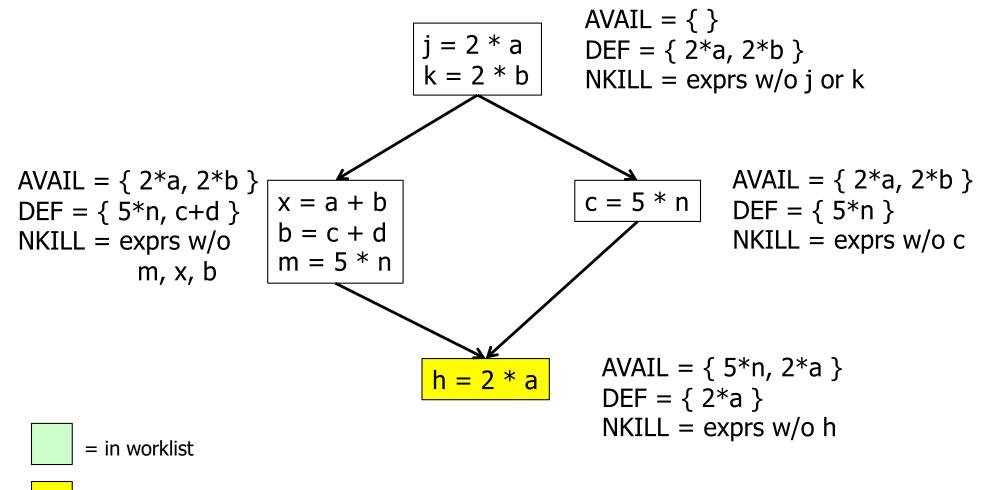




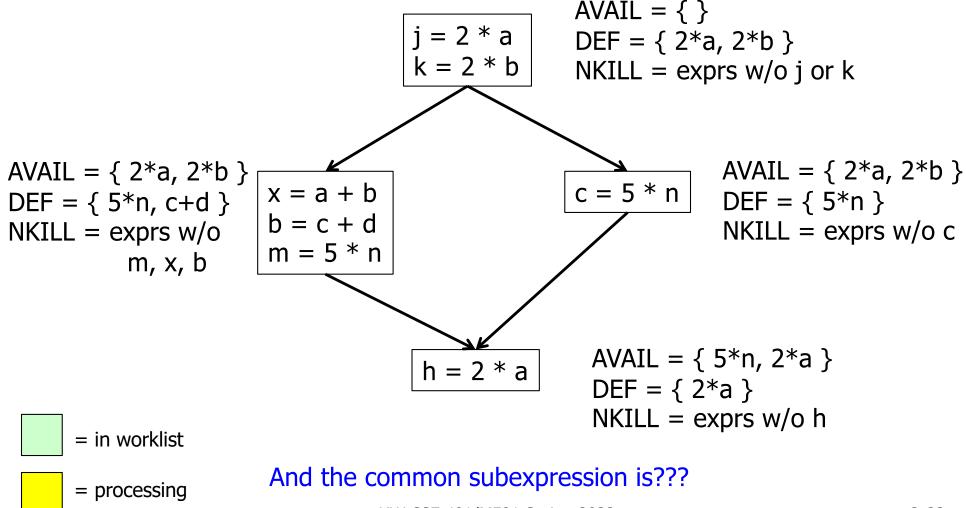


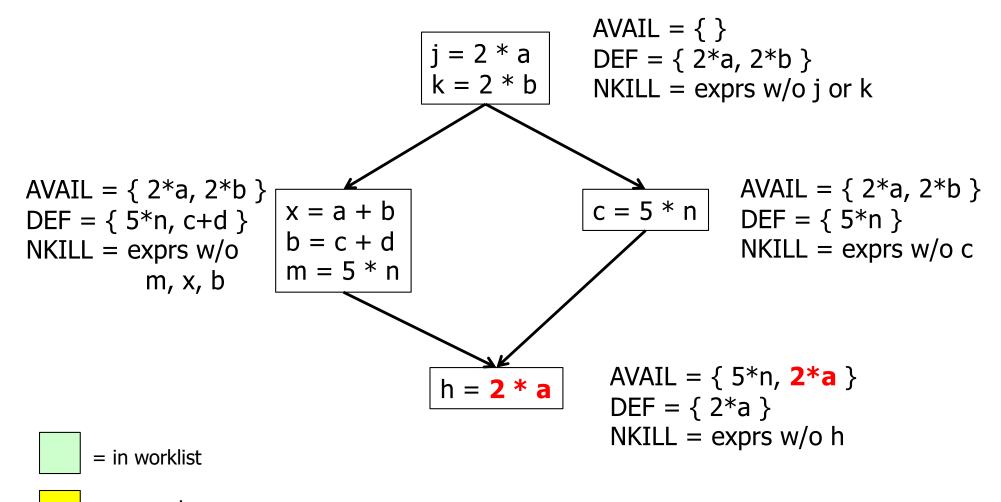






 $\mathsf{AVAIL}(b) = \bigcap_{x \in \mathsf{preds}(b)} (\mathsf{DEF}(x) \cup (\mathsf{AVAIL}(x) \cap \mathsf{NKILL}(x)))$





- Termination?
 - Always
 - AVAIL(b) initially all empty
 - In equation above, DEF & NKILL are unchanging, and adding to AVAIL(x) can't shrink AVAIL(b)
 - Only a finite number of exprs in the program, so the alg is again climbing a finite n-cube; can't climb forever
- Order of worklist removals?
 - Any will work
 - Some are faster than others; e.g., if CFG is a DAG, then go in topological order (which would have been faster on the example above)

Dataflow analysis

- Available expressions is an example of a dataflow analysis problem
- Many similar problems can be expressed in a similar framework
- Only the first part of the story once we've discovered facts, we then need to use them to improve code

Characterizing Dataflow Analysis

 All of these algorithms involve sets of facts about each basic block b

IN(b) – facts true on entry to b

OUT(b) – facts true on exit from b

GEN(b) – facts created and not killed in b

KILL(*b*) – facts killed in *b*

- These are related by the equation $OUT(b) = GEN(b) \cup (IN(b) - KILL(b))$
 - Solve this iteratively for all blocks
 - Sometimes information propagates forward; sometimes backward

Example:Live Variable Analysis

- A variable v is *live* at point p iff there is any path from p to a use of v along which v is not redefined
- Some uses:
 - Register allocation only live variables need a register
 - Dead Store Elimination if variable not live at store, then stored variable will never be used
 - Detecting uses of uninitialized variables if live at declaration (before initialization) then it *might* be used uninitialized
 - Improve SSA construction only need Φ-function for variables that are live in a block (later)

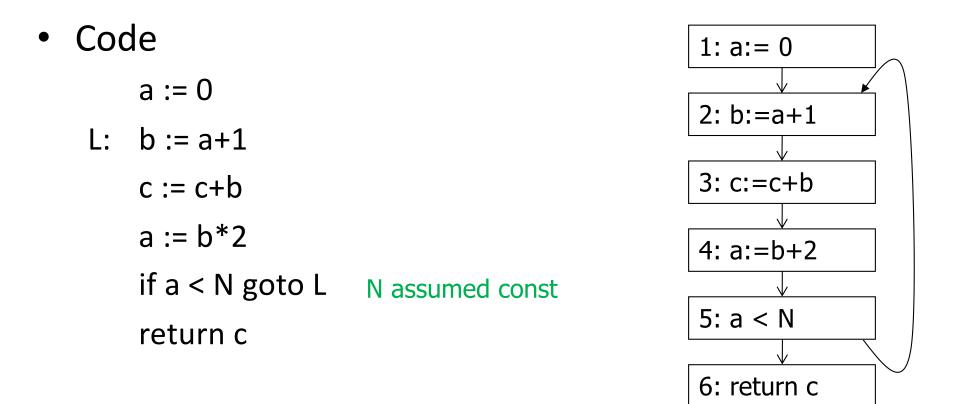
Liveness Analysis Sets

- For each block b, define
 - use[b] = variable used in b before any def
 - def[b] = variable defined in b and not killed
 - in[b] = variables live on entry to b
 - out[b] = variables live on exit from b

Equations for Live Variables

- Given the preceding definitions, we have
 - $\operatorname{out}[b] = \bigcup_{s \in \operatorname{succ}[b]} \operatorname{in}[s]$
 - $-in[b] = use[b] \cup (out[b] def[b])$
- Algorithm
 - For all *b* set in[*b*] = out[*b*] = \emptyset
 - Update out, in until no change

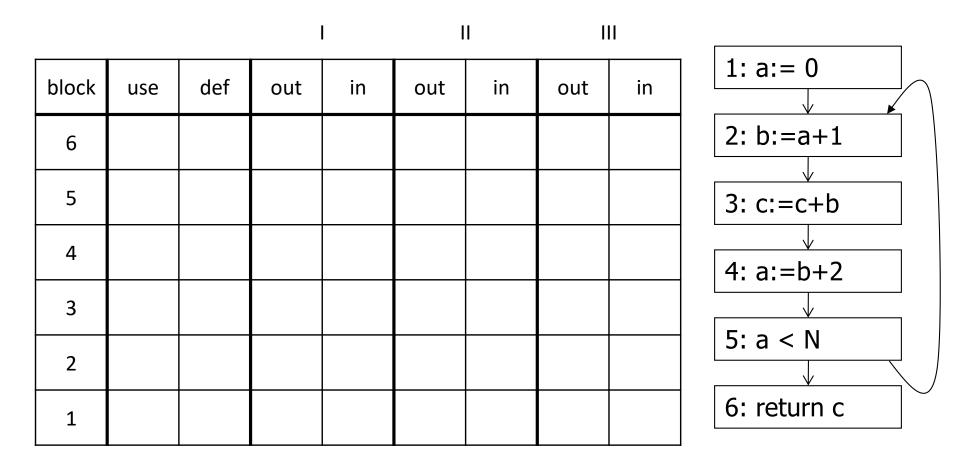
Example (1 stmt per block)



$$out[b] = \bigcup_{s \in succ[b]} in[s]$$

 $in[b] = use[b] \cup (out[b] - def[b])$

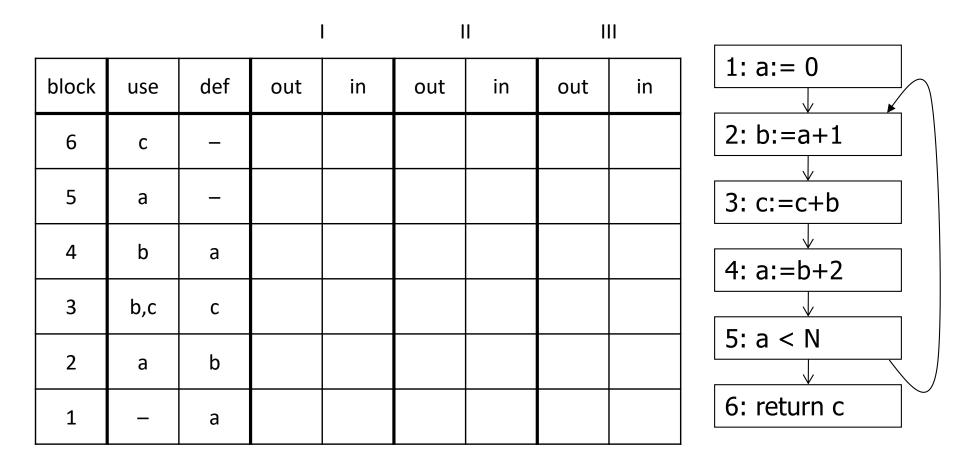
Calculation



use[b] = variable used in b before any def def[b] = variable defined in b and not killed in[b] = variables live on entry to bout[b] = variables live on exit from b UW

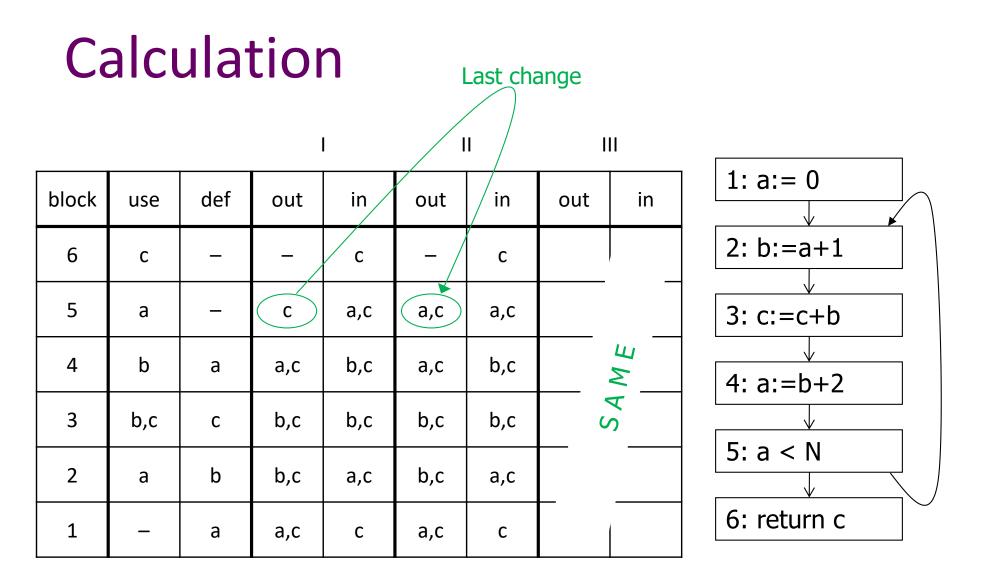
 $out[b] = \bigcup_{s \in succ[b]} in[s]$ $in[b] = use[b] \cup (out[b] - def[b])$

Calculation



use[b] = variable used in b before any def def[b] = variable defined in b and not killed in[b] = variables live on entry to bout[b] = variables live on exit from b UW

 $out[b] = \bigcup_{s \in succ[b]} in[s]$ $in[b] = use[b] \cup (out[b] - def[b])$



use[b] = variable used in b before any def def[b] = variable defined in b and not killed in[b] = variables live on entry to bout[b] = variables live on exit from b UM

 $out[b] = \bigcup_{s \in succ[b]} in[s]$ $in[b] = use[b] \cup (out[b] - def[b])$

Equations for Live Variables v2

- Many problems have more than one formulation. For example, Live Variables...
- Sets
 - USED(b) variables used in b before being defined in b
 - NOTDEF(b) variables not defined in b
 - LIVE(b) variables live on exit from b
- Equation

 $\mathsf{LIVE}(b) = \bigcup_{s \in \mathsf{succ}(b)} \mathsf{USED}(s) \cup (\mathsf{LIVE}(s) \cap \mathsf{NOTDEF}(s))$

Efficiency of Dataflow Analysis

- The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG
 - Forward problems reverse postorder
 - Backward problems postorder

Example: Reaching Definitions

- A definition d of some variable v reaches operation i iff i reads the value of v and there is a path from d to i that does not define v
- Uses
 - Find all of the possible definition points for a variable in an expression

Equations for Reaching Definitions

- Sets
 - DEFOUT(b) set of definitions in b that reach the end of b
 (i.e., not subsequently redefined in b)
 - SURVIVED(b) set of all definitions not obscured by a definition in b
 - REACHES(b) set of definitions that reach b
- Equation

REACHES(b) =

 $\cup_{p \in \mathsf{preds}(b)} (\mathsf{DEFOUT}(p) \cup (\mathsf{REACHES}(p) \cap \mathsf{SURVIVED}(p)))$

Example: Very Busy Expressions

- An expression e is considered very busy at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations
- Uses
 - Code hoisting move *e* to *p* (at a minimum, it reduces code size; and faster if some *e*'s are more deeply nested in loops than *p*, tho other transforms often preclude this case.)

Equations for Very Busy Expressions

- Sets
 - USED(b) expressions used in b before they are killed
 - KILLED(b) expressions redefined in b before they are used
 - VERYBUSY(b) expressions very busy on exit from b
- Equation

VERYBUSY(*b*) =

 $\bigcap_{s \in \text{succ}(b)} (\text{USED}(s) \cup (\text{VERYBUSY}(s) - \text{KILLED}(s)))$

Using Dataflow Information

• A few examples of possible transformations...

Classic Common-Subexpression Elimination (CSE)

- In a statement s: z := x op y, if x op y is
 available at s then it need not be recomputed
- Where was it computed?
- Analysis: compute *reaching expressions* i.e., statements n: v := x op y such that the path from n to s does not compute x op y or define X Or Y. (How? Like reaching definitions, but for expressions.)

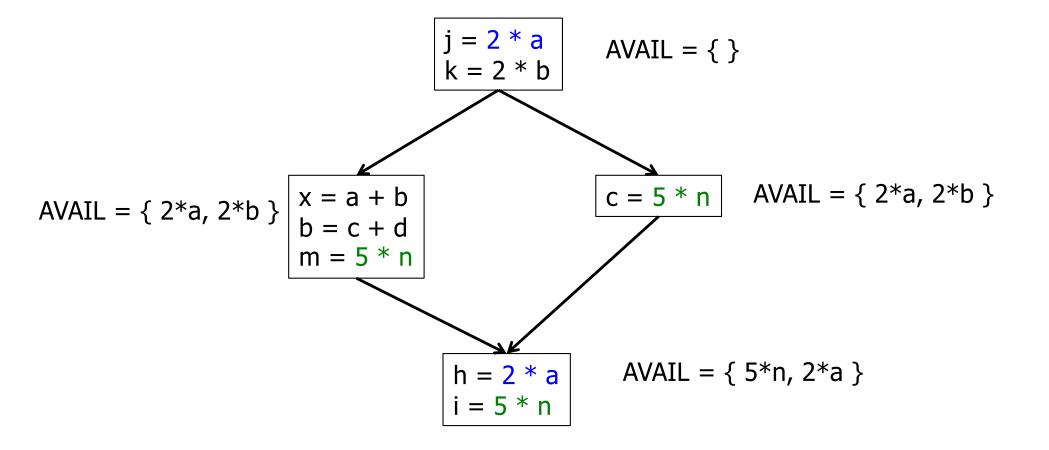
Classic CSE Transformation

- If x op y is defined at n and reaches s
 - Create new temporary t_i
 - Rewrite n: v := x op y as
 - n: *t_i* := *x* op *y* // *t_i* is a new temporary n': *v* := *t_i*
 - Rewrite statement s: z := x op y to be

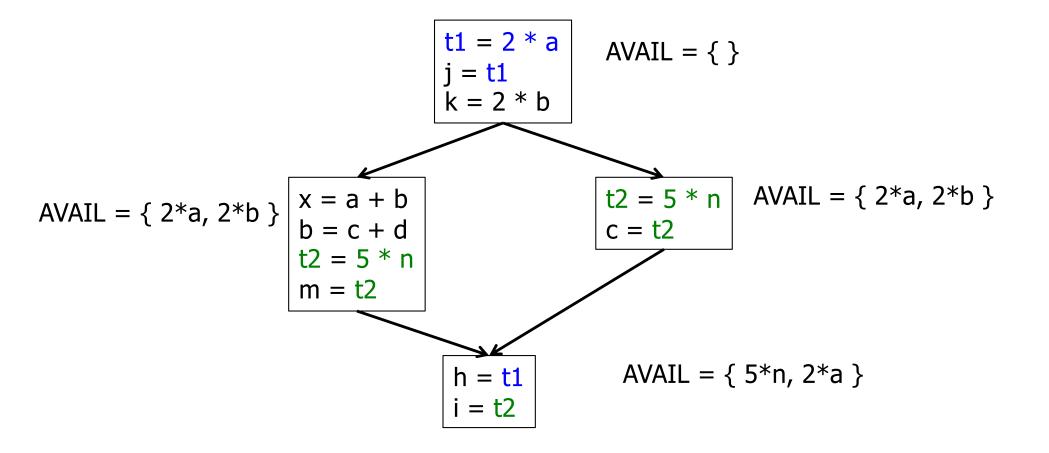
s: *z* := *t*_{*i*}

– (Rely on copy propagation to remove extra assignments if not really needed)

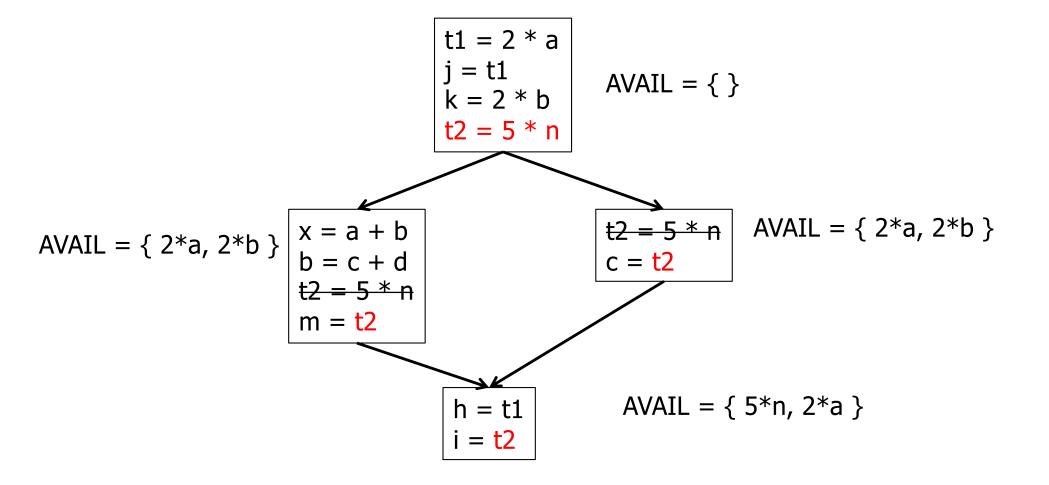
Revisiting Example (w/small change)



Revisiting Example (w/small change)



Then Apply Very Busy...



Constant Propagation

- Suppose we have
 - Statement d: *t* := *c*, where *c* is constant
 - Statement n that uses t
- If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t

Copy Propagation

- Similar to constant propagation
- Setup:
 - Statement d: t := z
 - Statement n uses t
- If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
 - Recall that this can help remove dead assignments

Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic
- But it can expose other optimizations, e.g.,

- c := u + z // copy propagation makes this y + z
- After copy propagation we can recognize the common subexpression

Dead Code (Assignment) Elimination

• If we have an instruction

s: *a* := *b* op *c*

and *a* is not live-out after s, then s can be eliminated

- Provided it has no implicit side effects that are visible (output, exceptions, etc.)
 - If b or c are function calls, they have to be assumed to have unknown side effects unless the compiler can prove otherwise

Dataflow...

- General framework for discovering facts about programs
 - Although not the only possible story
- And then: facts open opportunities for code improvement
- Next time: SSA (static single assignment) form transform program to a new form where each variable has only *one* single definition
 - Can make many optimizations/analysis more efficient