
CSE 401/M501 – Compilers

Dataflow Analysis

Spring 2022

Administrivia - Schedule

• Codegen project due Thursday, 5/26
• Project Report due Tuesday, 5/31
• HW4 (data flow/SSA) out soon, due 6/2
– Limited late days!

• Final exam is Tue. 6/7, 2:30 12/14

UW CSE 401/M501 Spring 2022 O-2

Except
M501

Agenda

• Dataflow analysis: a framework and algorithm
for many common compiler analyses

• Initial example: dataflow analysis for common
subexpression elimination

• Then: other analysis problems that work in
the same framework

• Some of these are the same analysis and
optimizations we’ve seen, but more formally
and with details

UW CSE 401/M501 Spring 2022 O-5

Common Subexpression Elimination

• Goal: use dataflow
analysis to find common
subexpressions

• Idea: calculate available
expressions at beginning
of each basic block

• Avoid re-evaluation of an
available expression – use
a copy operation
– Simple inside a single block;

more complex dataflow
analysis used across bocks

UW CSE 401/M501 Spring 2022 O-6

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

“Available” and Other Terms
• An expression e is defined at

point p in the CFG if its value
is computed at p
– Sometimes called definition site

• An expression e is killed at
point p if one of its operands
is defined at p
– Sometimes called kill site

• An expression e is available
at point p if every path
leading to p contains a prior
definition of e and e is not
killed between that definition
and p

UW CSE 401/M501 Spring 2022 O-7

t1 = a + b
...

t10 = a + b
…

b = 7
…

a+b
defined

a+b
available

a+b
killed

Available Expression Sets

To compute available expressions, for each block
b, define
– AVAIL(b) – the set of expressions available on entry

to b
– NKILL(b) – the set of expressions not killed in b
• all expressions in the program except those killed in b

– DEF(b) – the set of expressions defined in b and not
subsequently killed in b

UW CSE 401/M501 Spring 2022 O-8

Computing Available Expressions
• The set of expressions available on entry to b is the set

of expressions that are available on exit from every
predecessor x of b

AVAILin(b) = ∩xÎpreds(b) AVAILout(x),
where preds(b) is the set of b’s predecessors in the CFG
• The expressions available on exit from block b are those

defined in b or available on entry to b and not killed in
b, so

AVAIL(b) = ∩xÎpreds(b) (DEF(x) ∪ (AVAIL(x) ∩ NKILL(x)))
• This gives a system of simultaneous equations – a

dataflow problem

UW CSE 401/M501 Spring 2022 O-11

Computing Available Expressions

• Big Picture
– Build control-flow graph
– Calculate initial local data – DEF(b) and NKILL(b)

• This only needs to be done once for each block b and
depends only on the statements in b

– Iteratively calculate AVAIL(b) by repeatedly
evaluating equations until nothing changes
• Another fixed-point algorithm

UW CSE 401/M501 Spring 2022 O-12

Computing DEF

For each block b with operations o1, o2, …, on

KILLED = Æ // variables killed (later) in b, not expressions
DEF(b) = Æ
for k = n to 1 // note: working back to front

assume ok is “x = y + z”
add x to KILLED
if (y Ï KILLED and z Ï KILLED)

add “y + z” to DEF(b) // i.e., neither y nor z killed
// after this point in b

…

UW CSE 401/M501 Spring 2022 O-13

Computing NKILL

After computing DEF and KILLED for a block b,
compute set of all expressions in the program
not killed in b

NKILL(b) = { all expressions }
for each expression e

for each variable v Î e
if v Î KILLED(b) then

NKILL(b) = NKILL(b) – { e }

UW CSE 401/M501 Spring 2022 O-14

Example: Compute DEF and NKILL

UW CSE 401/M501 Spring 2022 O-15

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

DEF = { 2*a }
NKILL = exprs w/o h

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

Worklist = { all blocks bk }
AVAIL(bk) = Æ for all blocks bk

while (Worklist ¹ Æ)
remove a block b from Worklist
recompute AVAIL(b)
if AVAIL(b) changed

Worklist = Worklist È successors(b)

UW CSE 401/M501 Spring 2022 O-16

Example: Find Available Expressions

UW CSE 401/M501 Spring 2022 O-17

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

DEF = { 2*a }
NKILL = exprs w/o h

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

Example: Find Available Expressions

UW CSE 401/M501 Spring 2022 O-18

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

DEF = { 2*a }
NKILL = exprs w/o h

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

Example: Find Available Expressions

UW CSE 401/M501 Spring 2022 O-19

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

Example: Find Available Expressions

UW CSE 401/M501 Spring 2022 O-20

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

Example: Find Available Expressions

UW CSE 401/M501 Spring 2022 O-21

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

Example: Find Available Expressions

UW CSE 401/M501 Spring 2022 O-22

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

Example: Find Available Expressions

UW CSE 401/M501 Spring 2022 O-23

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing And the common subexpression is???

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

Example: Find Available Expressions

UW CSE 401/M501 Spring 2022 O-24

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a

c = 5 * n

AVAIL = { }
DEF = { 2*a, 2*b }
NKILL = exprs w/o j or k

AVAIL = { 2*a, 2*b }
DEF = { 5*n }
NKILL = exprs w/o c

AVAIL = { 5*n, 2*a }
DEF = { 2*a }
NKILL = exprs w/o h

AVAIL = { 2*a, 2*b }
DEF = { 5*n, c+d }
NKILL = exprs w/o

m, x, b

= in worklist

= processing

Example: Find Available Expressions

• Termination?
– Always
– AVAIL(b) initially all empty
– In equation above, DEF & NKILL are unchanging, and

adding to AVAIL(x) can’t shrink AVAIL(b)
– Only a finite number of exprs in the program, so the alg is

again climbing a finite n-cube; can’t climb forever
• Order of worklist removals?

– Any will work
– Some are faster than others; e.g., if CFG is a DAG, then go

in topological order (which would have been faster on the
example above)

UW CSE 401/M501 Spring 2022 O-25

AVAIL(b) = ÇxÎpreds(b) (DEF(x) È (AVAIL(x) Ç NKILL(x)))

Dataflow analysis

• Available expressions is an example of a
dataflow analysis problem

• Many similar problems can be expressed in a
similar framework

• Only the first part of the story – once we’ve
discovered facts, we then need to use them to
improve code

UW CSE 401/M501 Spring 2022 O-26

Characterizing Dataflow Analysis

• All of these algorithms involve sets of facts about
each basic block b

IN(b) – facts true on entry to b
OUT(b) – facts true on exit from b
GEN(b) – facts created and not killed in b
KILL(b) – facts killed in b

• These are related by the equation
OUT(b) = GEN(b) È (IN(b) – KILL(b))

– Solve this iteratively for all blocks
– Sometimes information propagates forward;

sometimes backward

UW CSE 401/M501 Spring 2022 O-27

Example:Live Variable Analysis

• A variable v is live at point p iff there is any path from
p to a use of v along which v is not redefined

• Some uses:
– Register allocation – only live variables need a register
– Dead Store Elimination – if variable not live at store, then

stored variable will never be used
– Detecting uses of uninitialized variables – if live at

declaration (before initialization) then it might be used
uninitialized

– Improve SSA construction – only need Φ-function for
variables that are live in a block (later)

UW CSE 401/M501 Spring 2022 O-28

Liveness Analysis Sets

• For each block b, define
– use[b] = variable used in b before any def
– def[b] = variable defined in b and not killed
– in[b] = variables live on entry to b
– out[b] = variables live on exit from b

UW CSE 401/M501 Spring 2022 O-29

Equations for Live Variables

• Given the preceding definitions, we have
– out[b] = ∪sÎsucc[b] in[s]
– in[b] = use[b] È (out[b] – def[b])

• Algorithm
– For all b set in[b] = out[b] = Æ
– Update out, in until no change

UW CSE 401/M501 Spring 2022 O-30

Example (1 stmt per block)

• Code
a := 0

L: b := a+1
c := c+b
a := b*2
if a < N goto L
return c

UW CSE 401/M501 Spring 2022 O-31

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

out[b] = ÈsÎsucc[b] in[s]
in[b] = use[b] È (out[b] – def[b])

N assumed const

Calculation

UW CSE 401/M501 Spring 2022 O-32

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

I II III

block use def out in out in out in

6

5

4

3

2

1

use[b] = variable used in b before any def
def[b] = variable defined in b and not killed
in[b] = variables live on entry to b
out[b] = variables live on exit from b

out[b] = ÈsÎsucc[b] in[s]
in[b] = use[b] È (out[b] – def[b])

Calculation

UW CSE 401/M501 Spring 2022 O-33

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

I II III

block use def out in out in out in

6 c –

5 a –

4 b a

3 b,c c

2 a b

1 – a

out[b] = ÈsÎsucc[b] in[s]
in[b] = use[b] È (out[b] – def[b])

use[b] = variable used in b before any def
def[b] = variable defined in b and not killed
in[b] = variables live on entry to b
out[b] = variables live on exit from b

Calculation

UW CSE 401/M501 Spring 2022 O-34

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

I II III

block use def out in out in out in

6 c – – c – c

5 a – c a,c a,c a,c

4 b a a,c b,c a,c b,c

3 b,c c b,c b,c b,c b,c

2 a b b,c a,c b,c a,c

1 – a a,c c a,c c

out[b] = ÈsÎsucc[b] in[s]
in[b] = use[b] È (out[b] – def[b])

use[b] = variable used in b before any def
def[b] = variable defined in b and not killed
in[b] = variables live on entry to b
out[b] = variables live on exit from b

S
A

M
 E

Last change

Equations for Live Variables v2

• Many problems have more than one
formulation. For example, Live Variables…

• Sets
– USED(b) – variables used in b before being defined

in b
– NOTDEF(b) – variables not defined in b
– LIVE(b) – variables live on exit from b

• Equation
LIVE(b) = ÈsÎsucc(b)USED(s) È (LIVE(s) Ç NOTDEF(s))

UW CSE 401/M501 Spring 2022 O-35

Efficiency of Dataflow Analysis

• The algorithms eventually terminate, but the
expected time needed can be reduced by
picking a good order to visit nodes in the CFG
– Forward problems – reverse postorder
– Backward problems – postorder

UW CSE 401/M501 Spring 2022 O-36

Example: Reaching Definitions

• A definition d of some variable v reaches
operation i iff i reads the value of v and there
is a path from d to i that does not define v

• Uses
– Find all of the possible definition points for a

variable in an expression

UW CSE 401/M501 Spring 2022 O-37

Equations for Reaching Definitions

• Sets
– DEFOUT(b) – set of definitions in b that reach the end of b

(i.e., not subsequently redefined in b)
– SURVIVED(b) – set of all definitions not obscured by a

definition in b
– REACHES(b) – set of definitions that reach b

• Equation
REACHES(b) =

ÈpÎpreds(b) (DEFOUT(p) È (REACHES(p) Ç SURVIVED(p)))

UW CSE 401/M501 Spring 2022 O-38

Example: Very Busy Expressions

• An expression e is considered very busy at
some point p if e is evaluated and used along
every path that leaves p, and evaluating e at p
would produce the same result as evaluating it
at the original locations

• Uses
– Code hoisting – move e to p (at a minimum, it

reduces code size; and faster if some e’s are more
deeply nested in loops than p, tho other
transforms often preclude this case.)

UW CSE 401/M501 Spring 2022 O-39

Equations for Very Busy Expressions

• Sets
– USED(b) – expressions used in b before they are killed
– KILLED(b) – expressions redefined in b before they are

used
– VERYBUSY(b) – expressions very busy on exit from b

• Equation
VERYBUSY(b) =

ÇsÎsucc(b) (USED(s) È (VERYBUSY(s) - KILLED(s)))

UW CSE 401/M501 Spring 2022 O-40

Using Dataflow Information

• A few examples of possible transformations…

UW CSE 401/M501 Spring 2022 O-41

Classic Common-Subexpression
Elimination (CSE)
• In a statement s: z := x op y, if x op y is

available at s then it need not be recomputed
• Where was it computed?
• Analysis: compute reaching expressions i.e.,

statements n: v := x op y such that the path
from n to s does not compute x op y or define
x or y. (How? Like reaching definitions, but for expressions.)

UW CSE 401/M501 Spring 2022 O-42

Classic CSE Transformation

• If x op y is defined at n and reaches s
– Create new temporary ti
– Rewrite n: v := x op y as

n: ti := x op y // ti is a new temporary
n’: v := ti

– Rewrite statement s: z := x op y to be
s: z := ti

– (Rely on copy propagation to remove extra
assignments if not really needed)

UW CSE 401/M501 Spring 2022 O-43

Revisiting Example (w/small change)

UW CSE 401/M501 Spring 2022 O-44

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

h = 2 * a
i = 5 * n

c = 5 * n

AVAIL = { }

AVAIL = { 2*a, 2*b }

AVAIL = { 5*n, 2*a }

AVAIL = { 2*a, 2*b }

Revisiting Example (w/small change)

UW CSE 401/M501 Spring 2022 O-45

t1 = 2 * a
j = t1
k = 2 * b

x = a + b
b = c + d
t2 = 5 * n
m = t2

h = t1
i = t2

t2 = 5 * n
c = t2

AVAIL = { }

AVAIL = { 2*a, 2*b }

AVAIL = { 5*n, 2*a }

AVAIL = { 2*a, 2*b }

Then Apply Very Busy…

UW CSE 401/M501 Spring 2022 O-46

t1 = 2 * a
j = t1
k = 2 * b
t2 = 5 * n

x = a + b
b = c + d
t2 = 5 * n
m = t2

h = t1
i = t2

t2 = 5 * n
c = t2

AVAIL = { }

AVAIL = { 2*a, 2*b }

AVAIL = { 5*n, 2*a }

AVAIL = { 2*a, 2*b }

Constant Propagation

• Suppose we have
– Statement d: t := c, where c is constant
– Statement n that uses t

• If d reaches n and no other definitions of t
reach n, then rewrite n to use c instead of t

UW CSE 401/M501 Spring 2022 O-47

Copy Propagation

• Similar to constant propagation
• Setup:
– Statement d: t := z
– Statement n uses t

• If d reaches n and no other definition of t
reaches n, and there is no definition of z on
any path from d to n, then rewrite n to use z
instead of t
– Recall that this can help remove dead assignments

UW CSE 401/M501 Spring 2022 O-48

Copy Propagation Tradeoffs

• Downside is that this can increase the lifetime
of variable z and increase need for registers or
memory traffic

• But it can expose other optimizations, e.g.,
a := y + z
u := y
c := u + z // copy propagation makes this y + z

– After copy propagation we can recognize the
common subexpression

UW CSE 401/M501 Spring 2022 O-49

Dead Code (Assignment) Elimination

• If we have an instruction
s: a := b op c

and a is not live-out after s, then s can be
eliminated
– Provided it has no implicit side effects that are

visible (output, exceptions, etc.)
• If b or c are function calls, they have to be assumed to

have unknown side effects unless the compiler can
prove otherwise

UW CSE 401/M501 Spring 2022 O-50

Dataflow…

• General framework for discovering facts about
programs
– Although not the only possible story

• And then: facts open opportunities for code
improvement

• Next time: SSA (static single assignment) form –
transform program to a new form where each
variable has only one single definition
– Can make many optimizations/analysis more efficient

UW CSE 401/M501 Spring 2022 O-51

