
CSE 401/M501 – Compilers

x86-64, Running MiniJava,
Basic Code Generation and Bootstrapping

Spring 2022

Running MiniJava Programs

• To run a MiniJava program
– Space needs to be allocated for a stack and a heap
– %rsp and other registers need to have sensible

initial values
–We need some way to allocate storage (for new)

and communicate with the outside world

UW CSE 401/M501 Spring 2022 M-2

Bootstrapping from C

• Idea: take advantage of the existing C runtime
library

• Use a small C main program to call the
MiniJava main method as if it were a C
function

• C’s standard library provides the execution
environment and we can call C functions from
compiled code for I/O, malloc, etc.

• More details later

UW CSE 401/M501 Spring 2022 M-3

Assembler File Format
• Compiler output is an assembly language program (ascii .s)
• GNU syntax is roughly this (src/runtime/demo.s in project

starter code is a runnable example, although not generated by
a MiniJava compiler)

.text # code segment

.globl asm_main # label at start of compiled static main
<generated code>

asm_main: # start of compiled “main”
...
.data
<generated method tables>
repeat .text/.data as needed
…
end

UW CSE 401/M501 Spring 2022 M-4

External Names

• In a Linux environment, an external symbol is
used as-is (xyzzy)

• In Windows and MacOS, an external symbol xyzzy
is written in asm code as _xyzzy (leading
underscore)

• Your compiler needs to generate code that runs
on attu using Linux conventions, but if you want
to support the other as an option, feel free to add
a compiler switch or something

UW CSE 401/M501 Spring 2022 M-5

Generating .asm Code

• Suggestion: isolate the actual compiler output
operations in a handful of routines
– Usual modularity reasons & saves some typing
– Some possibilities

// write code string s to .asm output
void gen(String s) { … }
// write “op src,dst” to .asm output
void genbin(String op, String src, String dst) { … }
// write label lbl to .asm output as “lbl:”
void genLabel(String lbl) { … }

– A handful of these methods should do it

UW CSE 401/M501 Spring 2022 M-6

A Simple Code Generation Strategy

• Goal: quick ‘n dirty correct code, optimize later if
time

• Traverse AST primarily in execution order and
emit code during the traversal
– Codegen visitor might want to traverse the tree in ad-

hoc ways depending on the order in which sub-parts
need to appear in the asm code

• Treat the x86-64 as a 1-register machine with a
stack for additional intermediate values(!)
– Ugly code, but will work – better later if there’s time

UW CSE 401/M501 Spring 2022 M-7

(The?) Simplifying Assumption

• Store all values (reference, int, boolean) in 64-
bit quadwords
– Natural size for 64-bit pointers, i.e., object

references (variables of class types)
– C’s “long” size for integers

• Use int64_t or uint64_t in any C code that interacts
with MiniJava generated code to guarantee size
(declared in <stdint.c>)

UW CSE 401/M501 Spring 2022 M-8

x86 as a Stack Machine
• Idea: Use x86-64 stack for expression evaluation with %rax as the

key temp register
• Invariant: Whenever (part of) an expression is evaluated at runtime:

– %rax is initially “empty”, i.e., its value can be discarded/overwritten
– the generated code leaves the result in %rax
– Stack will be same height, same contents after as before
– Stack top @ %rsp
– Other regs …

• If %rax value needs to be preserved while another expression is
evaluated, push %rax, evaluate, then pop when first value is needed
– Remember: always pop what you push
– Will produce lots of redundant, but correct, code

• Examples below follow code shape examples, but with more details
about code generation

UW CSE 401/M501 Spring 2022 M-10

Example: Generate Code for Constants
and Identifiers
Integer constants, say 17

gen(movq $17,%rax)

Local variables “var”
gen(movq varoffset(%rbp),%rax)

Instance variables “this.var”
gen(movq varoffset(%rdi),%rax)

UW CSE 401/M501 Spring 2022 M-11

The invariant:
- trashes %rax,
- leaves desired val in %rax;
- stack untouched

(r-value; any type –
int, bool, reference)

Example: Generate Code for exp1 + exp2

Visit exp1
– generates code to evaluate exp1 with result in %rax

gen(pushq %rax)
– push exp1 onto stack

Visit exp2
– generates code for exp2; result in %rax

gen(popq %rdx)
– pop left argument into %rdx; clean up stack

gen(addq %rdx,%rax)
– perform the addition; result in %rax

UW CSE 401/M501 Spring 2022 M-12

The invariant:
- trashes %rax,
- leaves desired val in %rax;
- stack untouched (net)

Example: var = exp; (1)

Assuming that var is a local variable
Visit node for exp

• Generates code to eval exp and leave result in %rax

gen(movq %rax,offset_of_variable(%rbp))

How would you handle if var is receiver’s
instance variable?

UW CSE 401/M501 Spring 2022 M-13

Example: var = exp; (2)

If var is a more complex expression (object or
array reference, for example)

visit var
gen(pushq %rax)

• push lvalue (address) of variable or object containing
variable onto stack

visit exp
• leaves rhs value in %rax

gen(popq %rdx)
gen(movq %rax,appropriate_offset(%rdx))

UW CSE 401/M501 Spring 2022 M-14

It’s ugly that this pattern differs

from previous slide; Feel free to

look for a better way!

X86 Registers - Reminder

UW CSE 401/M501 Spring 2022 M-16

Example: Generate Code for obj.f(e1,e2,…en)

In principle, the code should work like this:
Visit obj

• leaves reference to object in %rax
gen(movq %rax,%rdi)

• “this” pointer is first argument
Visit e1, e2, …, en. For each argument,

• gen(movq %rax,%correct_argument_register)
generate code to load method table pointer located at
0(%rdi) into some register, probably %rax
generate call instruction with indirect jump

UW CSE 401/M501 Spring 2022 M-17

BUT–Method Call Complications
• Big one: code to evaluate any argument might clobber

argument registers (i.e., computing an argument value
might require a method call)
– Possible strategy to cope on next slides, but feel free to do

something better
• One more: clobbers current method’s %rdi

– Save it on method entry; reload after call (or on every use)
• Another one: what if a method has too many

parameters?
– Minijava requires all methods to have ≤ 5 parameters plus

“this” – do better if you want, using standard calling
conventions

UW CSE 401/M501 Spring 2022 M-18

Method Calls in Parameters

• Suggestion to avoid trouble:
– Evaluate parameters and push them on the stack
– Right before the call instruction, pop the

parameters into the correct registers

• But….

UW CSE 401/M501 Spring 2022 M-19

Stack Alignment (1)

• Above idea hack works provided we don’t call a
method while an odd number of parameter values are
pushed on the stack!
– (violates 16-byte alignment on method call…)

• We have a similar problem if an odd number of
intermediate values are pushed on the stack when we
call a function while evaluating an expression
– (We might get away with it if it only involves calls to our

own generated, not library, code, but it would be wrong*
to do that)

*i.e., might “work”, but it’s not the right way to solve the problem

UW CSE 401/M501 Spring 2022 M-20

Stack Alignment (2)

• Workable solution: keep a counter in the code
generator of how much has been pushed on the
stack. If needed, emit extra gen(pushq %rax) or
gen(subq $8,%rsp) to “push” a useless value and
align the stack before generating a call instruction
– Be sure to pop it after!!

• Another solution (cleaner, but more work): make
stack frame big enough and use movq instead of
pushq to store arguments and temporaries
– Will need some extra bookkeeping to keep track of

how much to allocate and how temps are used and
where they are in the stack frame

UW CSE 401/M501 Spring 2022 M-21

Sigh…

• Multiple registers for method arguments is a
big win compared to pushing on the stack, but
complicates our life since we do not have a
fancy register allocator

• Feel free to do better than this simple
push/pop scheme – but remember, simple
and works wins over fancy and not finished or
broken

UW CSE 401/M501 Spring 2022 M-22

The “cleaner” idea in (some) more detail

• “Stack” = series of temps S_0, S_1,… in stack
frame; use movq instead of pushq/popq to
access. %rsp now static at end of frame, but…

• Extra bookkeeping:
– Every “push”/“pop” increments/decrements “name”

of temp that is the “top” of stack. (You basically need to do
this anyway to handle 16-byte alignment.)

– I.e., compiler tracks “top”, not %rsp. Active portion of
stack is S_0, …, S_{top-1}

– Keep “high water mark”, to track how many S_i’s to
allocate in stack frame (rounded to 16-byte align)

– Still use %rax, as key temp reg., just as before.

UW CSE 401/M501 Spring 2022 M-23

from 2 slides back

^

Even Better?
(Ignore this slide unless you really
want to try this! Talk to me if so!)

• Even better: What if you used k > 1 regs as a cache of top few to defer mem writes?
– Spill (Movq reg, S_0) only when stack height exceeds k
–Reload (Movq S_0, reg) when stack height drops k below last max, Etc.

• Use the k regs T0, ..., Tk in round-robin fashion: If Si is in a reg, it will be in Ti mod k.
• At a given point stack height = t, of which last r, 0 <= r <= k are in regs and t-r are in

mem in S0, …, St-r-1.
• On Push, if r=k, spill oldest value to St-r , and in any case, put new value into oldest

empty reg (which I think is T(t-r)mod k)
• On Pop, if r=0, load St into Tt mod k; regardless, “top” is T(r-1)mod k

• >= k pops between a spill & corresponding reload, & >= k pushes between a reload
& next spill, so reduced mem traffic

• Worst case(?): pushn popn, n>k, but saves 2k mem refs even then.
• Typical case: better(?)
• Possibly allocate all to Shigh-water-mark to have slots to save regs across

procedure calls (but unnecessary if callee saves)

UW CSE 401/M501 Spring 2022 M-24

S3
S2
S1
S0

T0
T1
T0
T1
T0

Top

k=2, t=4, r=1
Yellow=data
White=shadow or empty
In example state, push
nor pop touches mem

RegsMem

N.B.: This sli
de is

probably rid
dled

with off-by-one er
rors, a

nd worse

Code Gen for Method Definitions

• Generate label for method
Classname$methodname:

• Generate method prologue
Push %rbp, copy %rsp to %rbp, subtract frame size
(multiple of 16) from %rsp

• Visit statements in order
–Method epilogue is normally generated as part of

a return statement (details shortly)
– In MiniJava the return is generated after visiting

the method body to generate its code

UW CSE 401/M501 Spring 2022 M-25

Registers again…

• Method parameters are in registers
• But code generated for methods also will be

using registers, even if there are no calls to other
methods

• So how do we avoid clobbering parameters?
• Suggestion: Allocate space in the stack frame and

save copies of all parameter registers on method
entry. Use those copies as local variables when
you need to reference a parameter. ∴ accessing
“formal” and “local” are totally equivalent.

UW CSE 401/M501 Spring 2022 M-26

Example: return exp;

• Visit exp; this leaves result in %rax where it
should be

• Generate method epilogue (copy %rbp to
%rsp, pop %rbp) to unwind the stack frame;
follow with ret instruction
– Can use leave instead of movq/popq to unwind

the stack, but the separate instructions might be a
little easier to debug if something isn’t right

UW CSE 401/M501 Spring 2022 M-27

Control Flow: Unique Labels

• Needed in code generator: a String-valued
method that returns a different label each
time it is called (e.g., L1, L2, L3, …)

– Improvement: a set of methods that generate
different kinds of labels for different constructs
(can really help readability of the generated code)
• (while1, while2, while3, …; if1, if2, …; else1, else2, …;

endif1, endif2, … .)

UW CSE 401/M501 Spring 2022 M-28

Control Flow: Tests

• Recall that the context for compiling a
Boolean expression is:
– Label or address of jump target
–Whether to jump if true or false

• So the visitor for a Boolean expression should
receive this information from the parent node

UW CSE 401/M501 Spring 2022 M-29

Example: while(exp) body

• Assuming we want the test at the bottom of
the generated loop…
gen(jmp testLabel)
gen(bodyLabel:)
visit body
gen(testLabel:)
visit exp (condition) with target=bodyLabel and

sense=“jump if true”

UW CSE 401/M501 Spring 2022 M-30

Example: exp1 < exp2

• Similar to other binary operators
• Difference: surrounding (parent) context is a

target label and whether to jump if true or false
• Code

visit exp1
gen(pushq %rax)
visit exp2
gen(popq %rdx)
gen(cmpq %rdx,%rax)
gen(condjump targetLabel)

• appropriate conditional jump depending on sense of test

UW CSE 401/M501 Spring 2022 M-31

Boolean Operators

&& (and || if you add it)
– Create label(s) needed to skip around the two

parts of the expression
– Generate subexpressions with appropriate target

labels and conditions
!exp
– No code! Generate exp with same target label,

but reverse the sense of the condition

UW CSE 401/M501 Spring 2022 M-32

Reality check

• Lots of projects in the past have evaluated all
Booleans to get 1 or 0, then tested that value
for control flow

• Would be nice to do better (as above), but
“simple and works…”

• (And we need to be able to generate the 0/1
anyway for storable boolean expressions)

UW CSE 401/M501 Spring 2022 M-33

Join Points
• Loops and conditional statements have join points where

execution paths merge
• Generated code must ensure that machine state will be

consistent regardless of which path is taken to get there
– i.e., the paths through an if-else statement must not leave a

different number of values pushed onto the stack
– If we want a particular value in a particular register at a join

point, both paths must put it there, or we need to generate
additional code to move the value to the correct register

• With our simple 1-accumulator model of code generation,
this should usually be true without needing extra work;
with better use of registers it becomes a bigger issue
– With more registers, would need to be sure they are used

consistently at join point regardless of how we get there

UW CSE 401/M501 Spring 2022 M-34

Bootstrap Program

• The bootstrap is a tiny C program that calls your
compiled code as if it were an ordinary C function

• It also contains some functions that compiled
code can call as needed
– Mini “runtime library”
– Add to this if you like

• Sometimes simpler to generate a call to a new library
routine instead of generating in-line code

• Suggestion: do this for “exit if subscript out of bounds” check

• File: src/runtime/boot.c in project starter code

UW CSE 401/M501 Spring 2022 M-35

Bootstrap Program Sketch

#include <stdio.h>
extern void asm_main(); /* compiled code */
/* execute compiled program */
void main() { asm_main(); }
/* write x to standard output */
void put(int64_t x) { … }
/* return a pointer to a zeroed-out block of memory at

least nBytes large (or null on failure) */
char* mjcalloc(size_t nBytes) { return calloc(1,nBytes); }

UW CSE 401/M501 Spring 2022 M-36

UW CSE 401/M501 Spring 2022 M-37

/*
* boot.c: Main program for CSE minijava compiled code
* Additional functions used by compiled code can be added as desired.
*/

#include <stdio.h> …

extern void asm_main(); /* main function in compiled code */

/* Write x to standard output followed by a newline */
void put(int64_t x) { printf("%" PRId64 "\n", x); }

/* mjcalloc returns a pointer to a chunk of memory >= num_bytes */
void * mjcalloc(size_t num_bytes) {

return (calloc(1, num_bytes));
}

/* Execute compiled program asm_main */
int main() {

asm_main();
return 0;

}

Actual boot.c
with some
comments,
#includes, and
newlines
removed

Main Program Label

• Compiler needs special handling for the
publicstaticvoid main method label
– Label must be the same as the one declared

extern in the C bootstrap program and declared
.globl in the .s asm file

– asm_main used above
• Could be changed, but probably no point
• Why not “main”? (Hint: where is the real main?)

UW CSE 401/M501 Spring 2022 M-38

Interfacing to “Library” code

• Trivial to call “library” functions
• Evaluate parameters using the regular calling

conventions
• Generate a call instruction using the “library”

function label
– (External names need leading _ in Windows, OS X)
– Linker will hook everything up

UW CSE 401/M501 Spring 2022 M-39

System.out.println(exp)

MiniJava’s “print” statement
<compile exp; result in %rax>
movq %rax,%rdi # load argument register
call put # call external put routine

• If the stack is not properly 16-byte aligned
when call is executed, calls to external C or
library code can cause a runtime error (will
cause error halt on MacOS)

UW CSE 401/M501 Spring 2022 M-40

If you want to run code on a Mac…
• Compiled code should work on a mac, but need

to deal with a few things:
– External labels need to start with _ (e.g., _put)
– %rsp must be 16-byte aligned when call is

executed (should be anyway, but Linux will probably
let you get away with 8-byte alignment)

– Addressing modes: assembler might reject leaq
label,%rax. Use leaq label(%rip),%rax
instead (explicit base reg.; also works fine on Linux)

– Hard to run gdb on a mac. Use clang/lldb instead
• And be sure that things run on attu/cse vm Linux

in your final version!!! (No external _labels)
UW CSE 401/M501 Spring 2022 M-41

X86, not Apple silicon

^

And That’s It…

• We’ve now got enough on the table to
complete the compiler code generator

• Coming Attractions
– Lower-level IR and control-flow graphs
–Mid part of compiler (optimizations)
– Back end (industrial-strength instruction selection,

scheduling, and register allocation)

UW CSE 401/M501 Spring 2022 M-42

