
CSE 401/M501 – Compilers

Static Semantics

Spring 2022

Administrivia

• Parser/AST/print visitors due next Thurs., 11pm

• Mini-hw3 on LL grammars due Wed. (4/4)
– NO late days so we can hand out solutions before…

• Midterm exam on Fri. 4/6
–Will get topic list and old exams on web soon
– Review in sections on Thur. 4/5

UW CSE 401/M501 Spring 2022 I-3

Agenda

• Static semantics
• Attribute grammars
• Symbol tables
• Types & type checking
• Wrapup

Disclaimer: There’s (lots) more here than what’s
need for the project

UW CSE 401/M501 Spring 2022 I-6

What do we need to know and check
to verify that this is a legal program?
class C {

int a;
C(int initial) {
a = initial;

}
void setA(int val) {
a = val;

}
}

UW CSE 401/M501 Spring 2022 I-7

class Main {
public static void main(){

C c = new C(17);
c.setA(42);

}
}

Beyond Syntax

• There is a level of correctness that is not captured by a
context-free grammar
– Has a variable been declared?
– Are types consistent in an expression?
– In the assignment x=y; is y assignable to x?
– Does a method call have the right number and types of

parameters?
– In a selector p.q, is q a method or field of class instance p?
– Is variable x guaranteed to be initialized before it is used?
– Could p be null when p.q is executed?
– Etc. etc. etc.

UW CSE 401/M501 Spring 2022 I-9

What else do we need to know to
generate code?
• How big are objects? (i.e., how much storage

needs to be allocated by new)
• Where are fields allocated in an object?
• Where are local variables stored when a

method is called?
• Which methods are associated with an

object/class?
– How do we figure out which method to call based

on the run-time type of an object?

UW CSE 401/M501 Spring 2022 I-10

Agenda

• Static semantics
• Attribute grammars
• Symbol tables
• Types & type checking
• Wrapup

UW CSE 401/M501 Spring 2022 I-11

Semantic Analysis
• Main tasks:

– Extract types and other information from the program
– Check language rules that go beyond the context-free

grammar
– Resolve names – connect declarations and uses
– “Understand” the program well enough for synthesis

• Key data structure: Symbol tables
– Map each identifier in the program to information about it

(kind, type, etc.)
– Later: assign storage locations (stack frame/object offsets)

for variables/fields, add other annotations
• This is the final part of the analysis phase (front end) of

the compiler
UW CSE 401/M501 Spring 2022 I-12

Some Kinds of Semantic Information

Information Generated From Used to process

Symbol tables Declarations Expressions,
statements

Type information Declarations,
expressions

Operations

Constant/variable
information

Declarations,
expressions

Statements,
expressions

Register & memory
locations

Assigned by compiler Code generation

Values Constants Expressions

UW CSE 401/M501 Spring 2022 I-13

Semantic Checks

• For each language construct we want to know:
–What semantic rules should be checked

• Specified by language definition (type compatibility,
required initialization, etc.)

– For an expression, what is its type (used to check
whether expression is legal in the current context)

– For declarations, what information needs to be
captured to use elsewhere

UW CSE 401/M501 Spring 2022 I-14

A Sampling of Semantic Checks (0)

• Appearance of a name: id
– Check: id has been declared and is in scope
– Compute: Inferred type of id is its declared type

• Constant: v
– Compute: Inferred type and value are explicit

UW CSE 401/M501 Spring 2022 I-15

A Sampling of Semantic Checks (1)

• Binary operator: exp1 op exp2
– Check: exp1 and exp2 have compatible types

• Either identical, or
• Well-defined conversion to appropriate types

– Compute: Inferred type is a function of the
operator and operand types

UW CSE 401/M501 Spring 2022 I-16

A Sampling of Semantic Checks (2)

• Assignment: exp1 = exp2
– Check: exp1 is assignable (not a constant or expression)
– Check: exp1 and exp2 have (assignment-)compatible types

• Identical, or
• exp2 can be converted to exp1 (e.g., int to double), or
• Type of exp2 is a subclass of type of exp1 (can be decided at

compile time)

– Compute: Inferred type is type of exp1

UW CSE 401/M501 Spring 2022 I-17

A Sampling of Semantic Checks (3)

• Cast: (exp1) exp2
– Check: exp1 is a type
– Check: exp2 either

• Has same type as exp1

• Can be converted to type exp1 (e.g., double to int)
• Upcast (Trivial): is the same or a subclass of exp1

• Downcast: is a superclass of exp1 (in general this
requires a runtime check to verify type safety; at
compile time we can at least decide if it could be true)

– Compute: Inferred type is exp1

UW CSE 401/M501 Spring 2022 I-18

A Sampling of Semantic Checks (4)

• Field reference: exp.f
– Check: exp is a reference type (not primitive type)
– Check: The class of exp has a field named f
– Compute: Inferred type is declared type of f

UW CSE 401/M501 Spring 2022 I-19

A Sampling of Semantic Checks (5)
• Method call: exp.m(e1, e2, …, en)

– Check: exp is a reference type (not primitive type)
– Check: The type of exp has a method named m

• (inherited or declared as part of the type)
– Check: The method m has n parameters

• Or, at least one (overloaded) version of m exists with n parameters
• Or, >n, but remainder have defined defaults

– Check: Each argument has a type that can be assigned to
the associated parameter
• Same as “assignment compatible” check for assignment
• Overloading: need to find a “best match” among available

methods if more than one is compatible – or reject if result is
ambiguous (e.g., full Java, C++, others)

– Compute: Inferred (result) type is given by method
declaration (or could be void)

UW CSE 401/M501 Spring 2022 I-20

A Sampling of Semantic Checks (6)

• Return statement: return exp; or: return;
• Check:
– If the method is not void: The exp must be present

and can be assigned to a variable that has the
declared return type of the method – exactly the
same test as for assignment statement and
method call-by-value argument/parameter types

– If the method is void: The exp must be absent

UW CSE 401/M501 Spring 2022 I-21

Agenda

• Static semantics
• Attribute grammars
• Symbol tables
• Types & type checking
• Wrapup

UW CSE 401/M501 Spring 2022 I-22

Attribute Grammars

• A systematic way to think about semantic
analysis

• Formalize properties checked and computed
during semantic analysis and relate them to
grammar productions in the CFG (or AST)

• Sometimes used directly, but even when not,
AGs are a useful way to organize the analysis
and think about it

UW CSE 401/M501 Spring 2022 I-23

Attribute Grammars

• Idea: associate attributes with each node in the
(abstract) syntax tree

• Examples of attributes
– Type information
– Storage location
– Assignable (e.g., expression vs variable/location –

same as: rvalue vs lvalue in C/C++ terms)
– Value (for constant expressions)
– etc. …

• Notation: X.a if a is an attribute of node X

UW CSE 401/M501 Spring 2022 I-24

Attribute Example
• Assume that each node has a .val attribute giving the

computed value of that node
• AST and attribution for (1+2) * (6 / 3)

UW CSE 401/M501 Spring 2022 I-25

*

+

1

/

2 6 3

val: 6

val: 3

val: 1

val: 2

val: 6 val: 3

val: 2

Inherited and Synthesized Attributes

Given a production X ::= Y1 Y2 … Yn

• A synthesized attribute X.a is a function of some
combination of the attributes of the Yi’s (bottom
up)

• An inherited attribute Yi.b is a function of some
combination of attributes X.a and other Yj.c (top
down)
– Often restricted a bit. Example: only Y’s to the left can

be used (implications for attribute evaluation order)

UW CSE 401/M501 Spring 2022 I-26

Attribute Equations

• For each kind of node we give a set of
equations (not assignments) relating attribute
values of the node and its children
– Example: plus.val = exp1.val + exp2.val

• Attribution (evaluation) means finding a
solution that satisfies all of the equations in
the tree
– This is an example of a constraint language

UW CSE 401/M501 Spring 2022 I-27

Informal Example of Attribute Rules (1)

• Suppose we have the following grammar for a
trivial language

program ::= decl stmt
decl ::= int id;
stmt ::= exp = exp ;
exp ::= id | exp + exp | 1

• What attributes would we create to check
types and assignability (lvalue vs rvalue)?

UW CSE 401/M501 Spring 2022 I-28

Informal Example of Attribute Rules (2)

• Attributes of nodes
– env (environment, e.g., list of known names and

their properties)
• synthesized by decl, inherited by stmt
• Each entry maps a name to its type and kind

– type (expression type)
• synthesized

– kind (variable [var or lvalue] vs value [val or
rvalue])

• synthesized

UW CSE 401/M501 Spring 2022 I-29

Attributes for Declarations

decl ::= int id;
decl.env = {id ⟶ (int, var)}

UW CSE 401/M501 Spring 2022 I-30

decl

env: { id -> (int,var) }

Attributes for Program

program ::= decl stmt
stmt.env = decl.env

UW CSE 401/M501 Spring 2022 I-31

pgm

decl stmt

env env

Attributes for Constants

exp ::= 1
exp.kind = val
exp.type = int

UW CSE 401/M501 Spring 2022 I-32

exp (int)

kind: val
type: int

Attributes for Identifier Exprs.

exp ::= id
(type, kind) = exp.env.lookup(id)
error if id not found in env
exp.type = type (i.e., id type)
exp.kind = kind (i.e., id kind)

UW CSE 401/M501 Spring 2022 I-33

exp (id)

env: { id -> (t, k) ... }
kind: k
type: t

Attributes for Addition

exp ::= exp1 + exp2
exp1.env = exp.env
exp2.env = exp.env
error if exp1.type != exp2.type

(or error if not compatible, depending on language rules)

exp.type = exp1.type (or exp2.type)
(or whatever type the language rules specify)

exp.kind = val

UW CSE 401/M501 Spring 2022 I-34

+

exp1 exp2

env { … }
type

env { … }
type

kind: val

env { … }
type

Attribute Rules for Assignment

stmt ::= exp1 = exp2;
exp1.env = stmt.env
exp2.env = stmt.env
error if exp2.type is not assignment compatible with
exp1.type
error if exp1.kind is not var (can’t be val)

UW CSE 401/M501 Spring 2022 I-35

=

exp1 exp2

env { … }
type
kind

env { … }
type

env { … }
type

Example
int x; x = x + 1;

UW CSE 401/M501 Spring 2022 I-36

pgm

decl x =

exp: x +

exp: x exp: 1

env: { x -> (int,var) }
env: { x -> (int,var) }

env: { x -> (int,var) }
type: int, kind: var

env: { x -> (int,var) }

env: { x -> (int,var) }
type: int, kind: var

env: { x -> (int,var) }
type: int, kind: val

env: { x -> (int,var) }
type: int, kind: val

Extensions

• This can be extended to handle sequences of
declarations and statements
– Sequences of declarations builds up larger

environments, each decl synthesizes a new env
from previous one plus the new binding

– Full environment is passed down to statements
and expressions

UW CSE 401/M501 Spring 2022 I-37

Observations

• These are equational computations
– Think functional programming, no side effects

• Solver can be automated, provided the
attribute equations are non-circular

• But implementation complications:
– Non-local computation
– Can’t afford to literally make/pass around copies

of large, aggregate structures like environments

UW CSE 401/M501 Spring 2022 I-39

In Practice

• Attribute grammars give us a good way of
thinking about how to structure semantic checks

• Symbol tables will hold environment information
• Add fields to AST nodes to refer to appropriate

attributes (symbol table entries for identifiers,
types for expressions including identifiers, etc.)
– Put in appropriate places in AST class inheritance tree

and exploit inheritance so nodes have appropriate
fields. Most statements don’t need types, for
example, but all expressions do.

UW CSE 401/M501 Spring 2022 I-40

Agenda

• Static semantics
• Attribute grammars
• Symbol tables
• Types & type checking
• Wrapup

UW CSE 401/M501 Spring 2022 I-42

Symbol Tables

• Map identifiers to
<type, kind, location, other properties>

• Operations
– Lookup(id) => information
– Enter(id, information)
– Open/close scopes

• Build & use during semantics pass
– Build first from declarations
– Then use to check semantic rules

• Use (and augment) in later compiler phases

UW CSE 401/M501 Spring 2022 I-43

Aside: Implementing Symbol Tables

• Big topic in classical (i.e., ancient) compiler
courses: implementing a hashed symbol table

• These days: use the collection classes that are
provided with the standard language libraries
(Java, C#, C++, ML, Haskell, etc.)
– Then tune & optimize if it really matters

• In production compilers, it really matters
– Up to a point…

• In Java:
– Map (HashMap) will handle most cases
– List (ArrayList) for ordered lists (parameters, etc.)

UW CSE 401/M501 Spring 2022 I-44

Symbol Tables for MiniJava

• We’ll outline a scheme that does what we
need, but feel free to modify/adapt as needed

• Mix of global and local tables

• A few more features here than needed for our
MiniJava project

UW CSE 401/M501 Spring 2022 I-45

Symbol Tables for MiniJava: Global

• Global – Per Program Information
– Single global table to map class names to per-class

symbol tables
• Created in a pass over class definitions in AST
• Used in remaining parts of compiler to check class

types and their field/method names and extract
information about them

UW CSE 401/M501 Spring 2022 I-46

Class name Info

…

…

sym tables

Symbol Tables for MiniJava: Class

• One symbol table for each class
– One entry per method/field declared in the class

• Contents: type information, public/private, parameter types
(for methods), storage locations (later), etc.

• Reached from global table of class names
• For Java, we actually need multiple symbol tables

(or more complex symbol table) per class
– The same identifier can be used for both a method

name and a field name in a single class
• We will support this in our MiniJava project

UW CSE 401/M501 Spring 2022 I-47

In pictures….

UW CSE 401/M501 Spring 2022 I-48

Class name Info

…

…

(global scope) method name Info

…

…

variable name Info

…

…

(class scope)

etc.

Symbol Tables for MiniJava: Global/Class

• All global tables persist throughout the
compilation
– And beyond in a real compiler…

• Symbolic information in Java .class or MSIL files, link-
time optimization information in gcc .o files)

• Debug information in .o and .exe files
• Some or all of this information in library files (.a, .so)
• Type information for garbage collector

UW CSE 401/M501 Spring 2022 I-49

Symbol Tables for MiniJava: Methods

• One local symbol table for each method
– One entry for each local variable or parameter

• Contents: type info, storage locations (add later), etc.

– Needed only while compiling the method; could
discard when done if a single pass compiler
• But if type checking and code gen, etc. are done in separate

passes, this table needs to persist until we’re done with it
– And beyond: may need type info for runtime debugging, memory

management/GC, exception handling try/catch block info, etc.

• For our MiniJava compiler we will have multiple passes

UW CSE 401/M501 Spring 2022 I-50

In pictures….

UW CSE 401/M501 Spring 2022 I-51

Class Info

…

…

(global scope) method Info

…

…

variable Info

…

…

(class scope)

etc.

name Info

…

…

(method scope)

name Info

…

…

Disclaimer: For pedagogical
purposes only. Actual
implementation(s) may vary
depending on suitability for
particular circumstances.

Beyond MiniJava
• What we aren’t dealing with: nested scopes

– Inner classes
– Nested scopes in methods – reuse of identifiers in parallel or

inner scopes (most languages); nested functions (ML etc. …)
– Lambdas and function closures (Racket, JavaScript, Java, C#, , …)

• Basic idea: new symbol table for inner scopes, linked to
surrounding scope’s table
– Lookups traverse stack of symbol tables, top = current /

innermost scope, bottom = global scope)
– Start search in inner scope (top); if not found in enclosing scope
– Pop symbol table when we exit a scope (but table persists…)

• Also ignoring static fields/methods, accessibility (public,
protected, private), package scopes, …

UW CSE 401/M501 Spring 2022 I-52

Engineering Issues (1)

• In multipass compilers, inner scope symbol
table needs to persist to use in later passes
– Can’t really delete symbol tables on scope exit
– Retain tables and add a pointer to the parent

scope table (effectively a reverse tree of symbol
tables for nested scopes with root = global table)

• Keep a pointer to current innermost scope (usually a
leaf but could be interior node) and start looking for
symbols there

UW CSE 401/M501 Spring 2022 I-53

Engineering Issues (2)

• In practice, often want to retain O(1) lookup
or something close to it
–Would like to avoid O(depth of scope nesting),

although some compilers assume this will be small
enough not to matter

–When it matters, use hash tables with additional
information (linked lists of various sorts) to get the
scope nesting right

• Usually need some sort of scope entry/exit operations
– See a compiler textbook for ideas & details

UW CSE 401/M501 Spring 2022 I-54

Error Recovery

• What to do when an undeclared identifier is
encountered?
– Goal: only complain once (Why?)
– Can forge a symbol table entry for it once you’ve

complained so it will be found in the future
– Assign the forged entry a type of “unknown”
– “Unknown” is the type of all malformed

expressions and is compatible with all other types
• Allows you to only complain once! (How?)

UW CSE 401/M501 Spring 2022 I-55

“Predefined” Things

• Many languages have some “predefined” items
(constants, functions, classes, namespaces,
standard libraries, …)

• Include initialization code or declarations to
manually create symbol table entries for these in
an outermost scope when the compiler starts up
– Rest of compiler generally doesn’t need to know the

difference between “predeclared” items and ones
found in the program

– Possible to put “standard prelude” information in a
file or data resource and use that to initialize
• Tradeoffs?

UW CSE 401/M501 Spring 2022 I-56

Agenda

• Static semantics
• Attribute grammars
• Symbol tables
• Types & type checking
• Wrapup

UW CSE 401/M501 Spring 2022 I-57

Types

• Classical roles of types in programming languages
– Run-time safety
– Compile-time error detection
– Improved expressiveness (method or operator

overloading, for example)
– Provide information to optimizer

• In strongly typed languages, allows compiler to make
assumptions about possible values

• Qualifiers like const, final, or restrict (in C) allow for other
assumptions

UW CSE 401/M501 Spring 2022 I-58

Type Checking Terminology
Static vs. dynamic typing

– static: checking done prior to execution (e.g., compile-time)
– dynamic: checking during execution

Strong vs. weak typing
– strong: guarantees no illegal operations performed
– weak: can’t make guarantees

Caveats:
• Hybrids common
• Inconsistent usage

common
• “untyped,” “typeless”

could mean dynamic
or weak

UW CSE 401/M501 Spring 2022 59

static dynamic

strong Java, SML Scheme, Ruby

weak C PERL

Type Systems

• Base Types
– Fundamental, atomic types
– Typical examples: int, double, char, bool

• Compound/Constructed Types
– Built up from other types (recursively)
– Constructors include records/structs/classes,

arrays, pointers, enumerations, functions,
modules, …

• Most language provide a small collection of these

UW CSE 401/M501 Spring 2022 I-60

How to Represent Types in a Compiler?

One solution: create a shallow class hierarchy
• Example:

abstract class Type { … } // or interface
class BaseType extends Type { … }
class ClassType extends Type { … }

• Should not need too many of these

UW CSE 401/M501 Spring 2022 I-61

Types vs ASTs

• Types nodes are not AST nodes!
• AST = abstract representation of source program

(including source program type info)
• Types = abstract representation of type semantics

for type checking, inference, etc. (i.e., an ADT)
– May include information not explicitly represented in

the source code, or may describe types in ways more
convenient for processing

• Be sure you have a separate “type” class
hierarchy in your compiler for typechecking that
is not part of the AST source-code class hierarchy

UW CSE 401/M501 Spring 2022 I-62

Base Types
• For each base type (int, boolean, char, double, etc.)

create a single object to represent it (singleton!)
– Base types in symbol table entries and AST nodes are

direct references to these objects
– Base type objects usually created at compiler startup

• Useful to create a type “void” object for the result
“type” of functions that do not return a value

• Also useful to create a type “unknown” object for
errors
– (“void” and “unknown” types reduce the need for special

case code in various places in the type checker; don’t have
to return “null” for “no type” or “not declared” cases, etc.)

UW CSE 401/M501 Spring 2022 I-63

Compound Types

• Basic idea: use an appropriate “compound
type” or “type constructor” object that
contains references to the component types
– Limited number of these – correspond directly to

type constructors in the language (pointer, array,
record/struct/class, function,…)

– So a compound type is represented as a graph
• Some examples…

UW CSE 401/M501 Spring 2022 I-64

Array Types for Java

• For regular Java this is simple: only possibility
is # of dimensions and element type (which
can be another array type or anything else)

class ArrayType extends Type {
int nDims;
Type elementType;

}

UW CSE 401/M501 Spring 2022 I-65

Array Types for Other Languages
• Example: Pascal allowed arrays to be indexed by any

discrete type like an enum, char, int subrange, or other
discrete type

array [indexType] of elementType
(fantastic idea – would be nice if it became popular again)

• Element type can be any other type, including an array
(e.g., 2-D array = 1-D array of 1-D array in many
languages – or might have explicit # of dimensions)

class GeneralArrayType extends Type {
Type indexType;
Type elementType;

}

UW CSE 401/M501 Spring 2022 I-66

Class Types

• Type for: class id { fields and methods }
class ClassType extends Type {

Type baseClassType; // ref to base class
Map fields; // type info for fields
Map methods; // type info for methods

}

(MiniJava project note: May not want to represent class
types exactly like this. Depending on how class symbol
tables are represented, the class symbol table(s) might
be a sufficient representation of a class type.)

UW CSE 401/M501 Spring 2022 I-67

Methods/Functions

• Type of a method is its result type plus an
ordered list of parameter types

class MethodType extends Type {
Type resultType; // type or “void”
List parameterTypes;

}

• Sometimes called the method “signature”

UW CSE 401/M501 Spring 2022 I-68

Type Equivalance

• For base types this is simple: types are the
same if they are identical

• Can use pointer comparison in the type checker if you
have a singleton object for each base type

UW CSE 401/M501 Spring 2022 I-70

Type Equivalence for Compound Types

• Two basic choices
– Structural equivalence: two types are the same if they

are the same kind of type and their component types
are equivalent, recursively

– Name equivalence: two types are the same only if
they have the same name, even if their structures
match

• Different language design philosophies
– e.g., are Complex and Rectangular2DPoint the same?
– e.g., are Point (Cartesian) and Point (Polar) the same?

UW CSE 401/M501 Spring 2022 I-71

Structural Equivalence

• Structural equivalence says two types are equal
iff they have same structure
– Atomic types are tautologically the same structure

and are the same type if they are equal
– For type constructors: equal if the same constructor

and, recursively, type components are equal
• Ex: atomic types, array types, ML record types
• Implement with recursive implementation of

equals, or by canonicalization of types when
types created, then use pointer/ref. equality

UW CSE 401/M501 Spring 2022 72

Name Equivalence

• Name equivalence says that two types are
equal iff they came from the same textual
occurrence of a type constructor
– Ex: Java class types, C struct types (struct tag

name), datatypes in ML
– But: (special case) type synonyms (e.g. typedef

in C) do not define new types, they introduce
another name for an existing type

• Implement with pointer equality assuming
appropriate representation of type info

UW CSE 401/M501 Spring 2022 73

Type Equivalence and Inheritance
• Suppose we have

class Base { … }
class Extended extends Base { … }

• A variable declared with type Base has a compile-time
type or static type of Base

• During execution, that variable may refer to an object
of class Base or any of its subclasses like Extended (or
can be null), often called the the runtime type or
dynamic type
– Since subclass is guaranteed to have all fields/methods of

base class, type checker only needs to deal with declared
(compile-time) types of variables and, in fact, can’t track
runtime types of all possible values assigned to variables

UW CSE 401/M501 Spring 2022 I-74

Type Casts

• In most languages, one can explicitly cast an
expression of one type to another
– sometimes a cast means a conversion (e.g., casts

between numeric types)
– sometimes a cast means a change of static type

without doing any computation (casts between
pointer types or (in C/C++) pointer and numeric
types)

– for objects, can be a upcast (free and always safe)
or downcast (requires runtime check to be safe)

UW CSE 401/M501 Spring 2022 75

Type Conversions and Coercions

• In full Java, we can explicitly convert a value of
type double to one of type int
– can represent as unary operator in the AST
– parse, typecheck, codegen as usual

• In full Java, can implicitly coerce a value of
type int to one of type double
– compiler inserts unary conversion operators into

AST, based on results of type checking (not parsing)

UW CSE 401/M501 Spring 2022 76

C and Java: type casts

• In C/C++: safety/correctness of casts not checked
– allows writing low-level code that’s not type-safe
– C++ has more elaborate casts, and one of them does

require runtime checks
• In Java: downcasts from superclass to subclass

need runtime check to preserve type safety
• static typechecker allows the cast
• typechecker/codegen inserts runtime check

– (same code needed to handle “instanceof”)

• Java’s primary need for dynamic type checking

UW CSE 401/M501 Spring 2022 77

Various Notions of Type Compatibility

• There are usually several relations on types
that we need to evaluate in a compiler:
– “is the same as”
– “is assignable to”
– “is same or a subclass of”
– “is convertible to”

• Exact meanings and checks needed depend on
the language spec.

• Be sure to check for the right one(s)

UW CSE 401/M501 Spring 2022 I-78

Useful Compiler Functions

• Create a handful of methods to decide different kinds
of type compatibility:
– Types are identical
– Type t1 is assignment compatible with t2

– Parameter list is compatible with types of expressions in
the method call (likely uses assignment compatibility)

• Usual modularity reasons: isolate these decisions in
one place and hide the actual type representation from
the rest of the compiler

• Very likely belong in the same package (ADT) with the
type representation classes

UW CSE 401/M501 Spring 2022 I-79

Implementing Type Checking for MiniJava

• Create multiple visitors for the AST
• First pass/passes: gather information
– Collect global type information for classes
– Could do this in one pass, or might want to do one

pass to collect class information, then a second
one to collect per-class information about fields
and methods – you decide

• Next set of passes: go through method bodies
to check types, other semantic constraints

UW CSE 401/M501 Spring 2022 I-80

Agenda

• Static semantics
• Attribute grammars
• Symbol tables
• Types & type checking
• Wrapup

UW CSE 401/M501 Spring 2022 I-81

Disclaimer

• This overview of semantics, type
representation, etc. should give you a decent
idea of what needs to be done in your project,
but you’ll need to adapt the ideas to the
project specifics.

• You’ll also find good ideas in your compiler
book…

• And remember that these slides cover more
than is needed for our specific project

UW CSE 401/M501 Spring 2022 I-82

Coming Attractions

• Need to start thinking about translating to
target code (x86-64 assembly language for our
project)

• Next lectures
– x86-64 overview (as a target for simple compilers)
– Runtime representation of classes, objects, data,

and method stack frames
– Assembly language code for higher-level language

statements, method calls, dynamic dispatch, …

UW CSE 401/M501 Spring 2022 I-83

