
CSE 401/M501 – Compilers

ASTs, Modularity, and the Visitor Pattern

Spring 2022

Agenda

• Today:
– AST operations: modularity and encapsulation
– Visitor pattern: basic ideas and variations
– Some of the “why” behind the “how”

• Covered in sections:
– Representation of ASTs as a tree of Java objects
– Parser semantic actions and AST generation
– AST/Parser/Visitor classes in project code

UW CSE 401/M501 Spring 2022 H-3

Intermediate Representations

• In most compilers, the parser builds an
intermediate representation (IR) of the program
– Typically an AST, as in the MiniJava project

• Rest of the compiler transforms the IR to improve
(“optimize”) it and eventually translate to final
target code
– Typically will transform initial IR to one or more

different IRs along the way
• We’ll look at AST’s now – other IRs later when we

look at optimizations and analysis

UW CSE 401/M501 Spring 2022 G-4

Abstract Syntax Trees (ASTs)

• Idea: capture the essential structure of a
program; omit extraneous details
– i.e, include only what the rest of the compiler

needs; omit concrete syntax used only to guide
the parse (punctuation, chain productions, etc.)

• Full grammar and derivation needed as part of
parsing (it’s the control flow for the parser),
but a full derivation contains many details that
are only needed for parsing, and not after

UW CSE 401/M501 Spring 2022 H-5

Parse Tree / AST example (1)
Full parse tree Abstract syntax (AST)

UW CSE 401/M501 Spring 2022 H-6

program

program

statement
statement

ifStmt

assignStmt
statement

expr assignStmt
expr expr

intid

id expr

int
id expr

int

a = 1 ; if (a + 1) b = 2 ;

program

+

ID(a) INT(1)

=

ID(b) INT(2)

=

ID(a) INT(1)

IF

statement list

Parse Tree / AST example (2)
Full parse tree Abstract syntax (AST)

UW CSE 401/M501 Spring 2022 H-7

INT(3) INT(4)

INT(2) *

+
expr

int

2

expr term

+

term factor

*

factor

int
int

4

factor

term

3

Implementing ASTs in Java

• Multiple ways to do this, but typically (and in our
our project)
– Simple tree node objects (basically structs/records)

• Subtree pointers plus (usually) other useful information like
source program locations (e.g., line numbers), links to
semantic information (symbol table, types, … more later), …

• But not much more!
• Basically dumb data structures with public fields, not “smart

objects”
– Use type system and inheritance to factor common

information and allow polymorphic treatment of
related kinds of nodes

UW CSE 401/M501 Spring 2022 H-8

Building ASTs

• Idea: each time the parser reduces, find or build
an AST node / subtree representing that
production/handle/nonterminal
– Based on nodes of constituent RHS symbols

Maybe just echo node from RHS (e.g. T::=F)
– Maybe new node links RHS constituents (T::=T*F)

• Attach the code to do this to the grammar rules
in our CUP (parser generator) input.
– More in sections and in the Parser+AST project

assignment

UW CSE 401/M501 Spring 2022 H-9

vs int(3)

int(3) int(4)

*

Operations on ASTs

• Once we have the AST, we may want to:
– Print a readable dump of the tree
– Print a parseable (source-code) version of the tree

(so-called pretty-printing)
– Do static semantic analysis:

• Type checking
• Verify that things are declared and initialized properly
• Etc. etc. etc. etc.

– Perform optimizing transformations on the tree
– Generate code from the tree, or
– Generate another IR from the tree for further

processing

UW CSE 401/M501 Spring 2022 H-10

Modularity

• Classic slogans:
– Do one thing well
–Minimize coupling, maximize cohesion
– Isolate operations/abstractions in modules
– Hide implementation details

• Okay, so where in a MiniJava compiler does
the typechecker module belong?

UW CSE 401/M501 Spring 2022 H-11

Where do the Operations Go?

• Pure “object-oriented” style
– Really, really, really smart AST nodes
– Each node knows how to perform every operation on itself

public class WhileNode extends StmtNode {
public WhileNode(…);
public typeCheck(…);
public StrengthReductionOptimize(…);
public DeadCodeEliminationOptimize(…);
public generateCode(…);
public prettyPrint(…);
…

}

UW CSE 401/M501 Spring 2022 H-12

Critique

• This is nicely encapsulated – all details about a
WhileNode are hidden in that class

• But it is poor modularity
• What happens if we want to add a new

optimization (or any other) operation?
– Have to modify every node class L

• Worse: the details of any particular operation
(optimization, type checking) are scattered
across the node classes

UW CSE 401/M501 Spring 2022 H-13

Modularity Issues

• Smart nodes make sense if the set of operations
is relatively fixed and we expect to need flexibility
to add new kinds of nodes

• Example: graphics system
– Operations: draw, move, iconify, highlight
– Objects: textbox, scrollbar, canvas, menu, dialog box,

plus new objects defined during execution or over
lifetime of system

• Another example: objects in a game or simulation

UW CSE 401/M501 Spring 2022 H-14

Modularity in a Compiler

• Abstract syntax does not change frequently over
time – language changes are usually incremental
\ Kinds of nodes are relatively fixed

• As a compiler evolves, it is common to modify or
add operations on the AST nodes
– Want to modularize each operation (type check,

optimize, code gen) so its parts are located together in
the source code

– Want to avoid having to change node classes when we
modify or add an operation

UW CSE 401/M501 Spring 2022 H-15

Two Views of Modularity

UW CSE 401/M501 Spring 2022 H-16

Type check

Optim
ize

Generate x86

Flatten

Print

IDENT X X X X X

exp X X X X X

while X X X X X

if X X X X X

Binop X X X X X

…

draw

m
ove

iconify

highlight

transm
ogrify

circle X X X X X

text X X X X X

canvas X X X X X

scroll X X X X X

dialog X X X X X

…

Visitor Pattern

• Idea: Package each operation (optimization, print,
code gen, …) in a separate visitor class (module)

• Create exactly one instance of each visitor class (a
singleton!)
– Sometimes called a “function object”
– Contains all of the methods for that particular

operation, one for each kind of AST node
• Include a generic “accept visitor” method in

every node class
• To perform an operation, pass the appropriate

“visitor object” around the AST during a traversal

UW CSE 401/M501 Spring 2022 H-17

Here’s the idea
To type-check this AST:
1. Create an object (instance) v of

the Type-Check visitor class
2. Pass the type-check object to

the root note accept(visitor)
method

3. Each node passes the visitor
object around the tree by
calling accept(v) in subtrees to
type-check the subtree, and
then combine results (a tree
traversal)

4. When each node “accepts” the
visitor, it arranges to call the
visitor method that knows how
to type-check that particular
kind of node

UW CSE 401/M501 Spring 2022 H-18

program

+

ID(a) INT(1)

=

ID(b) INT(2)

=

ID(a) INT(1)

IF

statement list

type-
check

v

Visitor issue: avoiding instanceof

• We’d like to avoid huge if-elseif nests in the visitor
to discover the node types as it is passed around
the tree

void checkTypes(ASTNode p) {
if (p instanceof WhileNode) { … }
else if (p instanceof IfNode) { … }
else if (p instanceof BinExp) { … }

…
}

UW CSE 401/M501 Spring 2022 H-19

Visitor “Double Dispatch”

• Include a “visit” method for every AST node type
in each Visitor

void visit(WhileNode);
void visit(ExpNode);
etc.

• Include an accept(Visitor v) method in each AST
node class

• When Visitor v is passed to an AST node, the
node’s accept method calls v.visit(this)
– Selects correct Visitor method for this node
– Often called “double dispatch”, but really single

dispatch combined with overloading

UW CSE 401/M501 Spring 2022 H-20

Visitor Interface
interface Visitor {

// overload visit for each AST node type
public void visit(WhileNode s);
public void visit(IfNode s);
public void visit(BinExp e);
…

}
– Every separate Visitor class implements this interface
– Aside: The result type can be whatever is convenient,

doesn’t have to be void, although that is common
– Note: could also give methods unique names e.g.,

visitWhile, visitIf, visitBinExp, etc. instead of overloading
visit(…). Best to follow existing code if either convention
already adopted, otherwise individual preference.

UW CSE 401/M501 Spring 2022 H-21

Accept Method in Each AST Node Class
• Every AST class overrides accept(Visitor)
• Example

public class WhileNode extends StmtNode {
…

// accept a visit from a Visitor object v
@Override
public void accept(Visitor v) {

v.visit(this); // call using type of “this” (WhileNode)
} // and dynamic dispatch to current visitor

…
}

• Key points
– Visitor object v passed as a parameter to WhileNode
– WhileNode calls v.visit, which calls v’s visit(WhileNode) because of

compile-time overloading – i.e., the correct method for this kind of node
• Note: if visitor methods have unique names, instead of calling overloaded

visit(…) WhileNode would call something like v.visitWhile(this).
UW CSE 401/M501 Spring 2022 H-22

Composite Objects (1)

• How do we handle composite objects?
• One possibility: the accept method passes the visitor

down to subtrees before (or after) visiting itself
public class WhileNode extends StmtNode {

Expr exp; Stmt stmt; // children
…
// accept a visit from visitor v
public void accept (Visitor v) {

this.exp.accept(v);
this.stmt.accept(v);
v.visit(this);

}

UW CSE 401/M501 Spring 2022 H-23

Composite Objects (2)

• Another possibility: the visitor can control the
traversal inside the visit method for that particular
kind of node

public void visit(WhileNode w) {
w.expr.accept(this);
w.stmt.accept(this);

}

UW CSE 401/M501 Spring 2022 H-24

So which to choose?
• Possibilities:

– Node objects drive the traversal and pass the visitors
around the tree in standard ways

– Visitor object drives the traversal (the visitor has access to
the node, including references to child subtrees)

• In a compiler:
– First choice handles many common cases
– Big compilers often have multiple visitor schemes (e.g.,

several standard traversals defined in Node interface –
postorder, inorder, … – plus custom orders in some visitors)

– For MiniJava: keep it simple and start with supplied
examples, but if you really need to do something different,
you can
• (i.e., keep an open mind, but not so open that you create needless

complexity)

UW CSE 401/M501 Spring 2022 H-25

Encapsulation

• A visitor object often needs to be able to
access state in the AST nodes
\May need to expose more node state than we

might do otherwise
• i.e., lots of public fields in node objects

– Overall a good tradeoff – better modularity
(plus, the nodes usually should be relatively simple data
objects anyway – not hiding much of anything)

UW CSE 401/M501 Spring 2022 H-26

Visitor Actions and State
• A visitor function has a reference to the node it is

visiting (its parameter)
\can access and manipulate subtrees directly

• Visitor object can also contain local data (state)
shared by methods in the visitor class
– This data is effectively “global” to the methods in the

visitor object, and can be used to store and pass around
information accumulated by the visit methods

public class TypeCheckVisitor implements Visitor {
public void visit(WhileNode s) { … }
public void visit(IfNode s) { … }
…
private <local state>; // all typecheck visitor methods can read/write this

}

UW CSE 401/M501 Spring 2022 H-27

Why is it so complicated?

• What we’re really trying to do: 2-argument
dynamic dispatch (“multimethods”)
– Pick correct method based on dynamic types of

both the node and the visitor

• But Java and most O-O languages only support
single dispatch
– So we use single dispatch plus overloading to get

the effect we want

UW CSE 401/M501 Spring 2022 H-28

References

• For Visitor pattern (and many others)
– Design Patterns: Elements of Reusable Object-

Oriented Software, Gamma, Helm, Johnson, and
Vlissides, Addison-Wesley, 1995 (the classic;
examples are in C++ and Smalltalk)

– Object-Oriented Design & Patterns, Horstmann,
A-W, 2nd ed, 2006 (uses Java)

• Specific information for MiniJava AST and
visitors in our project starter code + Appel
textbook & online

UW CSE 401/M501 Spring 2022 H-29

Coming Attractions
• Static Analysis

– Non-context-free rules (vars and types must be declared, etc.)
– Type checking & representation of types
– Symbol Tables

• Then compiler back end

• More about compiler IRs when we get to optimizations

• But first: finish parsing (LL, top-down, recursive descent, …) on Wed.
and a short hw3 covering that

• And a midterm exam on Fri. May 6

UW CSE 401/M501 Spring 2022 H-30

