CSE 401/M501 — Compilers

Parsing & Context-Free Grammars
Spring 2022

UW CSE 401/M501 Spring 2022

C-1

Administrivia

e Reminders:

— Project partner signup. Please fill out the form
* ASAP, please, but by tomorrow, 11 pm in any case
* Who's still looking for a partner?
— Post to ed discussion thread. Mingle at end of class?
— hw1 due Thur. night (regexps, etc.) via gradescope

e * ys *: be clear about regexp operators vs characters. Avoid

messy \e\s\c\a\p\e\s — I suggest *, [*] (underlined or
bracketed for terminal) vs * (plain for operator). Add a
short explanation (sentence or 2) to help grader with

notation.
* In-person Office Hours

* Leave doors open, avoid crowding, etc
UW CSE 401/M501 Spring 2022 C-3

Agenda for Today

Parsing overview
Context free grammars
Ambiguous grammars

Reading: Cooper & Torczon 3.1-3.2

— Dragon book is also particularly strong on
grammars and languages

UW CSE 401/M501 Spring 2022

C-6

Regular expressions have limits

 Famous example: {a"b" | n>0 }is not regular
 Why care? Because stuff like this isn’t either:

while(1<j) {
if(a && (b > (ctexp(-d[e/f[g]])))){
T (1+(j—k))/(l*m/n—o); Hmmm..., did I count
}} all those ({[]})'s

correctly?

e To the rescue: Context-Free Grammars

UW CSE 401/M501 Spring 2022 C-7

Context-free Grammars

* The syntax of most programming languages can be
specified by a context-free grammar (CFG)

 Compromise between
— REs: can’t nest (parens, e.g.) or specify recursive structure
— General grammars: more power than needed, undecidable
 Context-free grammalrs are d sweet SpOt
— Powerful enough to describe nesting, recursion
— Easy to parse; but also some restrictions for speed
* Not perfect

— Cannot capture semantics, like “must declare every
variable” or “must be int” — requires later semantic pass

— Can be ambiguous

UW CSE 401/M501 Spring 2022 C-8

Grammars / Syntax Analysis / Parsing

* Use CFG to specify syntax of a programming language
* Syntax analysis/parsing

— Establishes validity of input

— Imposes useful structure on otherwise flat token stream
* Concrete syntax tree — exactly as per CFG

e Abstract syntax tree (AST):
— Captures program structure, minus nits like “(“, “)”, “”
— Primary data structure for later phases of compilation

* Plan

— Study how context-free grammars specify syntax
— Study algorithms for parsing and building ASTs

UW CSE 401/M501 Spring 2022 c-9

program .= statement | program statement

statement .= assignStmt | ifStmt
assignStmt ::= id = expr;

Concrete syntax |mstme:=i(epr) statement

expr:.:= id| int| expr+ expr

idi=alb|cli|ljlk|n]|x]|y]|z

int::=0]1]12|3[4|5]|6]|7|8]9

program
Program/\
- statement
statement |
/ I1Stmt
statement
assignsStmt
assignstmt
./\
id | expr / id expr
| |
//ln‘ fd int
|
w—a=1 ; if (a + 1) b= 2;

UW CSE 401/M501 Spring 2022 C-10

Concrete vs Abstract Syntax

 The full (concrete) parse tree includes all derivation details.
Abstract Syntax Tree (AST) omits information that is necessary
to parse the input, but not for later processing

 Example:

Concrete Syntax Abstract Syntax

expr/e X< expr /Jr\
| |

| | id:a int:1

UW CSE 401/M501 Spring 2022 C-11

Context-Free Grammars

* Formally, a grammar G is a tuple <N,2,P,S>
where
— N is a finite set of non-terminal symbols
— 2 is a finite set of terminal symbols (alphabet)

— P is a finite set of productions
* Afinite subsetof N x (N U 2)*

— Sis the start symbol, a distinguished element of N

* If not specified otherwise, this is usually assumed to be
the non-terminal on the left of the first production

UW CSE 401/M501 Spring 2022 C-19

Standard Notations

a, b, c elements of 2

w, X,Vy,z elementsof 2*

A B, C elements of N

X, Y, Z elements of NUX

o, 3,y elements of (NUZ)*
A—oaorA:=aif (A, a)inP

UW CSE 401/M501 Spring 2022

C-20

Derivation Relations (1)

c aAy=>afy iff Ax=PBinP
— “derives”

e A= * o if thereis a chain of productions
starting with A that generates o

— transitive closure of =

UW CSE 401/M501 Spring 2022 C-21

Derivation Relations (2)

s WAy WPy iffA:=03inP

— derives leftmost (recall, by convention, w in 2*)
c o Aw= aPBw iffA:=FinP

— derives rightmost (ditto)

 We will only be interested in leftmost and
rightmost derivations — not random orderings

* Derivations vs trees: = |, is basically preorder
traversal of tree; = |, is its mirror.

UW CSE 401/M501 Spring 2022 C-22

Languages

e ForAin N, define L(A)={wEX* | A= *w}
e [(G) = L(S), where S is the start symbol of G

— Nonterminal on left of first rule is taken to be the
start symbol if one is not specified explicitly

UW CSE 401/M501 Spring 2022 C-23

Reduced Grammars

* Grammar G is reduced iff for every
production A ::= o in G there is a derivation
S=>*XAz=>Xx0z> *xyz
— i.e., no production is useless
* Convention: we will use only reduced
grammars

— There are algorithms for pruning useless
productions from grammars — see a formal
language or compiler book for details

UW CSE 401/M501 Spring 2022 C-24

Derivations and Parse Trees

* Derivation: a sequence of expansion steps,
beginning with the start symbol and leading to
a sequence of terminals

* Convenient formalism / textual representation

* Parsing Tree: convenient graphical
representation and compiler data structure

UW CSE 401/M501 Spring 2022 C-25

Ambiguity

e Grammar G is unambiguous iff every w in L(G)
has a unique leftmost (or rightmost) derivation

— unique leftmost or unique rightmost implies the other
— equivalent to saying “unique parse tree”
* A grammar without this property is ambiguous

— But other grammars that generate the same language
might be unambiguous

 We want unambiguous grammars for parsing,
and for interpretability of the program

UW CSE 401/M501 Spring 2022 C-26

Example: Ambiguous Grammar for
Arithmetic Expressions

expr ::= expr + expr | expr - expr
| expr * expr | expr [expr | int
int::=0|1|2|3|4]|5]|6|7|8]|9
* Exercise: show that this is ambiguous

— How? Show two different leftmost or rightmost
derivations for the same string

— Equivalently: show two different parse trees for
the same string

UW CSE 401/M501 Spring 2022

C-27

expr ::= expr + expr | expr - expr
| expr * expr | expr [expr | int

Example (C()nt) int::=0]1]2|3|4|5|6|7|8]9

e Give a leftmost derivation of 2+3*4 and show
the parse tree

expr

expr expr

int , ‘

UW CSE 401/M501 Spring 2022 C-28

expr ::= expr + expr | expr - expr
| expr * expr | expr [expr | int

Example (C()nt) int::=0]1]2|3|4|5|6|7|8]9

 Give a different leftmost derivation of
2+3*4 and show the parse tree

expr

T TIN expr 2+ (374
////Efgi\\\\ EXpr expr expr
EXpr eXpr expr expr
Int int
2 + 3 * 4) + 3 * 4

UW CSE 401/M501 Spring 2022 C-29

e Give two different derivations of 5+6+7

int

5+ (6+7)

expr ::= expr + expr | expr - expr

| expr * expr | expr [expr | int

Another example m=oi1i213141516171810

| expr
int int
|
7 5

UW CSE 401/M501 Spring 2022

(5+6) + 7

int

C-30

What’s going on here?

* The grammar has no notion of precedence or
associativity

* Traditional solution
— Create a non-terminal for each level of precedence
— |Isolate the corresponding part of the grammar

— Forces the parser to recognize higher precedence
subexpressions first

— Use left- or right-recursion for left- or right-associative
operators (non-associative operators are not
recursive)

UW CSE 401/M501 Spring 2022 C-31

Classic Expression Grammar
(first used in ALGOL 60)

expr ::= expr + term | expr —term | term
term ::= term * factor | term / factor | factor
factor ::=int | (expr)
int::=011[2|3|4|5]|6]|7

UW CSE 401/M501 Spring 2022 C-32

Check:

Derive2 +3 * 4

expr ::= expr + term | expr—term | term
term ::= term * factor | term [factor | factor
factor ::=int | (expr)
int::=0[1]2|3]|4|5]|6]|7

Separation of non-
/\ terminals enforces

expr
expr

term

factor

int

2 +

term

factor

term precedence
factor
int
* 4

UW CSE 401/M501 Spring 2022 C-33

expr ::= expr + term | expr—term | term

C h k . term ::= term * factor | term [factor | factor
eC . factor ::=int | (expr)

int::=0[1]2|3]|4|5]|6]|7

Derive5+6 + 7/

expr
expr term
expr term
term factor
factor
factor _
int int
int
5 + 6 + 7

UW CSE 401/M501 Spring 2022

Note interaction
between left- vs
right-recursive
rules and resulting
associativity

C-34

expr ::= expr + term | expr—term | term

C h k . term ::= term * factor | term [factor | factor
eC . factor ::=int | (expr)

Derive5+(6+7) nt:=01112]314151617

(left as an exercise ©)

UW CSE 401/M501 Spring 2022 C-35

Another Classic: The Dangling “else”
e Grammar for conditional statements
stmt ::=if (cond) stmt

| if (cond) stmt else stmt

— Exercise: show that this is ambiguous

e How?

UW CSE 401/M501 Spring 2022 C-36

stmt .= if (cond) stmt
| if (cond) stmt else stmt

One Derivation

stmt

if (cond)
if (cond)
stmt

else
stmt

stmt

if (cond) if (cond) stmt else stmt

UW CSE 401/M501 Spring 2022 C-37

stmt .= if (cond) stmt
| if (cond) stmt else stmt

Another Derivation

stmt

if (cond)
if (cond)
stmt
else
stmt

stmt

if (cond) if (cond) stmt else stmt

UW CSE 401/M501 Spring 2022 C-38

Solving “if” Ambiguity

* Fix the grammar to separate if statements
with else clause and if statements with no else

— Done in Java reference grammar
— Adds lots of non-terminals

* or, Change the language

— But it’d better be ok with the language’s
community to do this

* or, Use some ad-hoc rule in the parser
— “else matches closest unpaired if”

UW CSE 401/M501 Spring 2022 C-39

Resolving Ambiguity with Grammar (1)

Stmt ::= MatchedStmt | UnmatchedStmt
MatchedStmt ::=... |

if (Expr) MatchedStmt else MatchedStmt
UnmatchedStmt ::= ... |

if (Expr) Stmt |

if (Expr) MatchedStmt else UnmatchedStmt

— formal, no additional rules beyond syntax
— can be more obscure than original grammar

UW CSE 401/M501 Spring 2022 C-40

Stmt ::= MatchedStmt | UnmatchedStmt

MatchedStmt ::=... |
C e C if (Expr) MatchedStmt else MatchedStmt

UnmatchedStmt ::= if (Expr) Stmt |
if (Expr) MatchedStmt else UnmatchedStmt

(exercise ©)

if (cond) if (cond) stmt else stmt

UW CSE 401/M501 Spring 2022 C-41

Resolving Ambiguity with Grammar (2)

* If you can (re-)design the language, just avoid the
problem entirely

Stmt ::= ... |
if Expr then Stmt end |
if Expr then Stmt else Stmt end

+ formal, clear, elegant

+ allows sequence of Stmts in then and else branches, no {, }
heeded

— extra end required for every if
(But maybe this is a good idea anyway?)

UW CSE 401/M501 Spring 2022 C-42

Parsing

* Parsing: Given a grammar G and a sentence w
in L(G), traverse the derivation (parse tree) for
w in some standard order and do something
useful at each node

— The tree might not be produced explicitly, but the
control flow of the parser will correspond to a

traversal

UW CSE 401/M501 Spring 2022 C-43

“Standard Order”

* For practical reasons we want the parser to be
deterministic (no backtracking), and we want
to examine the source program from left to
right.

— (i.e., parse the program in linear time in the order
it appears in the source file)

UW CSE 401/M501 Spring 2022 C-44

program

Progra{\
P

statement

Common Orderings =

statement

assignStmt

assignsStmt
expr
id | expr ej(Pf EXP: id expr
* To p-d own ‘ /f:vt q /'/:7l‘ ‘ /'/:71'
a=1 ; if (a + 1) b = 2 ;

— Start with the root

— Traverse the parse tree depth-first, left-to-right
(leftmost derivation)

_ : _ At every step in the

LL(k)' recursive desce‘h derivation, replace the /eft-
(right-) most nonterminal

* Bottom-up

— Start at leaves and build up to the root
 Effectively a rightmost derivation in reverse(!) -

— LR(k) and subsets (LALR(k), SLR(k), etc.)

UW CSE 401/M501 Spring 2022 C-45

III

“Something Usefu

* At each point (node) in the traversal, perform
some semantic action

— Construct nodes of full parse tree (rare)
— Construct abstract syntax tree (AST) (common)

— Construct linear, lower-level representation (often
produced by traversing initial AST in later phases of
production compilers)

— Generate target code on the fly (done in 1-pass
compiler; not common in production compilers)

e Can’t generate great code in one pass, but useful if you need
a quick ‘n dirty working compiler

UW CSE 401/M501 Spring 2022 C-46

Parser Tools and Operators

* Most parser tools can cope with ambiguous
grammars

— Makes life simpler if used with discipline

* Usually can specify precedence & associativity

— Allows simpler, ambiguous grammar with fewer
nonterminals as basis for parser — let the tool handle

the details (but only when it makes sense)

e (i.e., expr ::= expr+expr | expr*expr | ... with assoc. &
precedence declarations is often the best solution)

* Take advantage of this to simplify the grammar
when using parser-generator tools

— We will do this in our compiler project

UW CSE 401/M501 Spring 2022 C-47

Parser Tools and Ambiguous
Grammars

* Possible rules for resolving other problems

— Earlier productions in the grammar preferred to
later ones (danger here if parser input changes)

— Longest match used if there is a choice (good
solution for dangling else and similar things)

* Parser tools normally allow for this

— But be sure that what the tool does is really what

you want

 And that it’s part of the permanent tool spec, so that v2
won’t do something different (that you don’t want!)

UW CSE 401/M501 Spring 2022 C-48

Coming Attractions

* Next topic: LR parsing
— Continue reading ch. 3

UW CSE 401/M501 Spring 2022 C-49

