
CSE 401/M501 – Compilers

Parsing & Context-Free Grammars
Spring 2022

UW CSE 401/M501 Spring 2022 C-1

Administrivia

• Reminders:
– Project partner signup. Please fill out the form

• ASAP, please, but by tomorrow, 11 pm in any case
• Who’s still looking for a partner?

– Post to ed discussion thread. Mingle at end of class?

– hw1 due Thur. night (regexps, etc.) via gradescope
• * vs *: be clear about regexp operators vs characters. Avoid

messy \e\s\c\a\p\e\s – I suggest *, [*] (underlined or
bracketed for terminal) vs * (plain for operator). Add a
short explanation (sentence or 2) to help grader with
notation.

• In-person Office Hours
• Leave doors open, avoid crowding, etc

UW CSE 401/M501 Spring 2022 C-3

Agenda for Today

• Parsing overview
• Context free grammars
• Ambiguous grammars
• Reading: Cooper & Torczon 3.1-3.2
– Dragon book is also particularly strong on

grammars and languages

UW CSE 401/M501 Spring 2022 C-6

Regular expressions have limits

• Famous example: { anbn | n ≥ 0 } is not regular
• Why care? Because stuff like this isn’t either:

while(i<j) {
if(a && (b > (c+exp(-d[e/f[g]])))){

i = (i+(j-k))/(l*m/n-o);
}}

• To the rescue: Context-Free Grammars

UW CSE 401/M501 Spring 2022 C-7

Hmmm…, did I count
all those ({ [] })’s

correctly?

Context-free Grammars
• The syntax of most programming languages can be

specified by a context-free grammar (CFG)
• Compromise between

– REs: can’t nest (parens, e.g.) or specify recursive structure
– General grammars: more power than needed, undecidable

• Context-free grammars are a sweet spot
– Powerful enough to describe nesting, recursion
– Easy to parse; but also some restrictions for speed

• Not perfect
– Cannot capture semantics, like “must declare every

variable” or “must be int” – requires later semantic pass
– Can be ambiguous

UW CSE 401/M501 Spring 2022 C-8

Grammars / Syntax Analysis / Parsing

• Use CFG to specify syntax of a programming language
• Syntax analysis/parsing

– Establishes validity of input
– Imposes useful structure on otherwise flat token stream

• Concrete syntax tree – exactly as per CFG
• Abstract syntax tree (AST):

– Captures program structure, minus nits like “(“, “)”, “;”
– Primary data structure for later phases of compilation

• Plan
– Study how context-free grammars specify syntax
– Study algorithms for parsing and building ASTs

UW CSE 401/M501 Spring 2022 C-9

Concrete syntax

a = 1 ; if (a + 1) b = 2 ;

UW CSE 401/M501 Spring 2022 C-10

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

program

program

statement
statement

ifStmt

assignStmt
statement

expr assignStmt
expr expr

intid

id expr

int
id expr

int

G

w

Concrete vs Abstract Syntax

• The full (concrete) parse tree includes all derivation details.
Abstract Syntax Tree (AST) omits information that is necessary
to parse the input, but not for later processing

• Example:
Concrete Syntax Abstract Syntax

UW CSE 401/M501 Spring 2022 C-11

expr
expr expr

id int

a + 1

+

id:a int:1

Context-Free Grammars

• Formally, a grammar G is a tuple <N,Σ,P,S>
where
– N is a finite set of non-terminal symbols
– Σ is a finite set of terminal symbols (alphabet)
– P is a finite set of productions

• A finite subset of N × (N È Σ)*

– S is the start symbol, a distinguished element of N
• If not specified otherwise, this is usually assumed to be

the non-terminal on the left of the first production

UW CSE 401/M501 Spring 2022 C-19

Standard Notations

a, b, c elements of Σ
w, x, y, z elements of Σ*
A, B, C elements of N
X, Y, Z elements of N∪Σ
a, b, g elements of (N∪Σ)*
A ➝ a or A ::= a if (A, a) in P

UW CSE 401/M501 Spring 2022 C-20

Derivation Relations (1)

• a A g⇒ a b g iff A ::= b in P
– “derives”

• A ⇒ * a if there is a chain of productions
starting with A that generates a
– transitive closure of ⇒

UW CSE 401/M501 Spring 2022 C-21

Derivation Relations (2)

• w A g⇒ lm w b g iff A ::= b in P
– derives leftmost (recall, by convention, w in Σ*)

• a A w ⇒ rm a b w iff A ::= b in P
– derives rightmost (ditto)

• We will only be interested in leftmost and
rightmost derivations – not random orderings

• Derivations vs trees: ⇒ lm is basically preorder
traversal of tree; ⇒ rm is its mirror.

UW CSE 401/M501 Spring 2022 C-22

Languages

• For A in N, define L(A) = { w ∈ Σ* | A ⇒ * w }
• L(G) = L(S), where S is the start symbol of G
– Nonterminal on left of first rule is taken to be the

start symbol if one is not specified explicitly

UW CSE 401/M501 Spring 2022 C-23

Reduced Grammars

• Grammar G is reduced iff for every
production A ::= a in G there is a derivation

S ⇒ * x A z ⇒ x a z ⇒ * xyz
– i.e., no production is useless

• Convention: we will use only reduced
grammars
– There are algorithms for pruning useless

productions from grammars – see a formal
language or compiler book for details

UW CSE 401/M501 Spring 2022 C-24

Derivations and Parse Trees

• Derivation: a sequence of expansion steps,
beginning with the start symbol and leading to
a sequence of terminals

• Convenient formalism / textual representation
• Parsing Tree: convenient graphical

representation and compiler data structure

UW CSE 401/M501 Spring 2022 C-25

Ambiguity

• Grammar G is unambiguous iff every w in L(G)
has a unique leftmost (or rightmost) derivation
– unique leftmost or unique rightmost implies the other
– equivalent to saying “unique parse tree”

• A grammar without this property is ambiguous
– But other grammars that generate the same language

might be unambiguous
• We want unambiguous grammars for parsing,

and for interpretability of the program

UW CSE 401/M501 Spring 2022 C-26

Example: Ambiguous Grammar for
Arithmetic Expressions

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
• Exercise: show that this is ambiguous
– How? Show two different leftmost or rightmost

derivations for the same string
– Equivalently: show two different parse trees for

the same string

UW CSE 401/M501 Spring 2022 C-27

Example (cont)

• Give a leftmost derivation of 2+3*4 and show
the parse tree

UW CSE 401/M501 Spring 2022 C-28

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

expr

int

2

expr expr

+

expr expr

*

int int

3 4

Example (cont)

• Give a different leftmost derivation of
2+3*4 and show the parse tree

UW CSE 401/M501 Spring 2022 C-29

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

expr

int

4

exprexpr

*

expr expr

+

int int

2 3

expr

int

2

expr expr

+

expr expr

*

int int

3 4

(2+3) * 4 2 + (3* 4)

Another example

• Give two different derivations of 5+6+7

UW CSE 401/M501 Spring 2022 C-30

expr ::= expr + expr | expr - expr
| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

expr

int

5

expr expr

+

expr expr

+

int int

6 7

expr

int

7

exprexpr

+

expr expr

+

int int

5 6

5 + (6+7) (5+6) + 7

What’s going on here?

• The grammar has no notion of precedence or
associativity

• Traditional solution
– Create a non-terminal for each level of precedence
– Isolate the corresponding part of the grammar
– Forces the parser to recognize higher precedence

subexpressions first
– Use left- or right-recursion for left- or right-associative

operators (non-associative operators are not
recursive)

UW CSE 401/M501 Spring 2022 C-31

Classic Expression Grammar
(first used in ALGOL 60)

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

UW CSE 401/M501 Spring 2022 C-32

Check:
Derive 2 + 3 * 4

UW CSE 401/M501 Spring 2022 C-33

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

expr

int

2

expr term

+

term factor

*

factor

int
int

4

factor

term

3

Separation of non-
terminals enforces
precedence

expr

+

term

Check:
Derive 5 + 6 + 7

Note interaction
between left- vs
right-recursive
rules and resulting
associativity

UW CSE 401/M501 Spring 2022 C-34

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

expr

int

5

factor

int
factor

term

7

factor

int

6 +

termexpr

Check:
Derive 5 + (6 + 7)

(left as an exercise J)

UW CSE 401/M501 Spring 2022 C-35

expr ::= expr + term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Another Classic: The Dangling “else”

• Grammar for conditional statements
stmt ::= if (cond) stmt

| if (cond) stmt else stmt

– Exercise: show that this is ambiguous
• How?

UW CSE 401/M501 Spring 2022 C-36

One Derivation

if (cond) if (cond) stmt else stmt

UW CSE 401/M501 Spring 2022 C-37

stmt ::= if (cond) stmt
| if (cond) stmt else stmt

stmt

stmt

if (cond)
if (cond)

stmt
else

stmt

Another Derivation

if (cond) if (cond) stmt else stmt

UW CSE 401/M501 Spring 2022 C-38

stmt ::= if (cond) stmt
| if (cond) stmt else stmt

stmt

stmt

if (cond)
if (cond)

stmt
else

stmt

Solving “if” Ambiguity

• Fix the grammar to separate if statements
with else clause and if statements with no else
– Done in Java reference grammar
– Adds lots of non-terminals

• or, Change the language
– But it’d better be ok with the language’s

community to do this
• or, Use some ad-hoc rule in the parser
– “else matches closest unpaired if”

UW CSE 401/M501 Spring 2022 C-39

Resolving Ambiguity with Grammar (1)

Stmt ::= MatchedStmt | UnmatchedStmt
MatchedStmt ::= ... |

if (Expr) MatchedStmt else MatchedStmt
UnmatchedStmt ::= … |

if (Expr) Stmt |
if (Expr) MatchedStmt else UnmatchedStmt

– formal, no additional rules beyond syntax
– can be more obscure than original grammar

UW CSE 401/M501 Spring 2022 C-40

Check

(exercise J)

if (cond) if (cond) stmt else stmt

UW CSE 401/M501 Spring 2022 C-41

Stmt ::= MatchedStmt | UnmatchedStmt
MatchedStmt ::= ... |

if (Expr) MatchedStmt else MatchedStmt
UnmatchedStmt ::= if (Expr) Stmt |

if (Expr) MatchedStmt else UnmatchedStmt

Resolving Ambiguity with Grammar (2)

• If you can (re-)design the language, just avoid the
problem entirely

Stmt ::= ... |
if Expr then Stmt end |
if Expr then Stmt else Stmt end

+ formal, clear, elegant
+ allows sequence of Stmts in then and else branches, no { , }

needed
– extra end required for every if

(But maybe this is a good idea anyway?)

UW CSE 401/M501 Spring 2022 C-42

Parsing

• Parsing: Given a grammar G and a sentence w
in L(G), traverse the derivation (parse tree) for
w in some standard order and do something
useful at each node
– The tree might not be produced explicitly, but the

control flow of the parser will correspond to a
traversal

UW CSE 401/M501 Spring 2022 C-43

“Standard Order”

• For practical reasons we want the parser to be
deterministic (no backtracking), and we want
to examine the source program from left to
right.
– (i.e., parse the program in linear time in the order

it appears in the source file)

UW CSE 401/M501 Spring 2022 C-44

Common Orderings

• Top-down
– Start with the root
– Traverse the parse tree depth-first, left-to-right

(leftmost derivation)
– LL(k), recursive-descent

• Bottom-up
– Start at leaves and build up to the root

• Effectively a rightmost derivation in reverse(!)
– LR(k) and subsets (LALR(k), SLR(k), etc.)

UW CSE 401/M501 Spring 2022 C-45

program

program

statement
statement

ifStmt

assignStmt
statement

expr assignStmt
expr expr

intid

id expr

int
id expr

int

a = 1 ; if (a + 1) b = 2 ;

At every step in the
derivation, replace the left-
(right-) most nonterminal

“Something Useful”

• At each point (node) in the traversal, perform
some semantic action
– Construct nodes of full parse tree (rare)
– Construct abstract syntax tree (AST) (common)
– Construct linear, lower-level representation (often

produced by traversing initial AST in later phases of
production compilers)

– Generate target code on the fly (done in 1-pass
compiler; not common in production compilers)
• Can’t generate great code in one pass, but useful if you need

a quick ‘n dirty working compiler

UW CSE 401/M501 Spring 2022 C-46

Parser Tools and Operators

• Most parser tools can cope with ambiguous
grammars
– Makes life simpler if used with discipline

• Usually can specify precedence & associativity
– Allows simpler, ambiguous grammar with fewer

nonterminals as basis for parser – let the tool handle
the details (but only when it makes sense)
• (i.e., expr ::= expr+expr | expr*expr | … with assoc. &

precedence declarations is often the best solution)
• Take advantage of this to simplify the grammar

when using parser-generator tools
– We will do this in our compiler project

UW CSE 401/M501 Spring 2022 C-47

Parser Tools and Ambiguous
Grammars
• Possible rules for resolving other problems
– Earlier productions in the grammar preferred to

later ones (danger here if parser input changes)
– Longest match used if there is a choice (good

solution for dangling else and similar things)
• Parser tools normally allow for this
– But be sure that what the tool does is really what

you want
• And that it’s part of the permanent tool spec, so that v2

won’t do something different (that you don’t want!)

UW CSE 401/M501 Spring 2022 C-48

Coming Attractions

• Next topic: LR parsing
– Continue reading ch. 3

UW CSE 401/M501 Spring 2022 C-49

