
CSE 401/M501 – Compilers

Languages, Automata, Regular Expressions 
& Scanners
Spring 2022



Administrivia

• Read: textbook ch. 1 and sec. 2.1-2.4
• Due next Tue. : pick a project partner & tell us via 

provided form; read directions on form
• HW#1, due next Thursday, 11pm
– Written problems on regexps/DFAs
– We’ll cover most everything needed by Fri.
– You’ll get email from gradescope when accounts are 

set up already(? Or later this week) – submit HW#1 there.
• Office hours posted – starting today
• email cse401-staff if things break (gradescope...)
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Agenda

• Quick review of basics of formal grammars
• Lexical specification of programming 

languages
• Regular expressions
• Using finite automata to recognize regular 

languages
• Scanners and Tokens
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Programming Language Specs

• Since the 1960s, the syntax of every significant 
programming language has been specified by 
a formal grammar
– First done in 1959 with BNF (Backus-Naur Form), 

used to specify ALGOL 60 syntax
– Borrowed from the linguistics community 

(Chomsky)
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Formal Languages & Automata Theory 
(a review on one slide)
• Alphabet: a finite set of symbols and characters (Σ)
• String: a finite, possibly empty, ordered sequence of 

symbols from an alphabet
• Language: a set of strings (possibly empty or infinite)
• Finite specifications of (possibly infinite) languages

– Automaton – a recognizer; a machine that accepts all 
strings in a language (and rejects all other strings)

– Grammar – a generator; a system for producing all strings 
in the language (and no other strings)

• A particular language may be specified by many 
different grammars and automata

• A grammar or automaton specifies only one language
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Language (Chomsky) hierarchy:
quick reminder
• Regular (Type-3) languages are 

specified by regular 
expressions/grammars and finite 
automata (FSAs)
– Specs and implementation of scanners

• Context-free (Type-2) languages are 
specified by context-free grammars 
and pushdown automata (PDAs)
– Specs and implementation of parsers

• Context-sensitive (Type-1) languages … 
aren’t too important (at least for us)

• Recursively-enumerable (Type-0) 
languages are specified by general 
grammars and Turing machines

Turing

CSL

CFL

Regular
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Example:
Grammar for a Tiny Language
program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if ( expr ) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Exercise: Derive a
simple program

a   =   1   ;      if   (   a   +   1   )     b    =    2    ;
UW CSE 401/M501 Spring 2022 B-9

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if ( expr ) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9



Exercise: Derive a
simple program

a   =   1   ;      if   (   a   +   1   )     b    =    2    ;
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program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if ( expr ) statement
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9program

int

program statement

statement

assignStmt

expr
id

int

ifStmt

expr expr

id int

assignStmt

exprid

expr statement



Productions
• The rules of a grammar are called productions
• Rules contain:

– Nonterminal symbols: grammar variables (program, statement, id, 
etc.)

– Terminal symbols: concrete syntax that appears in programs (a, b, c, 
0, 1, if, =, (, ), ; , …

• Meaning of:
nonterminal ::= <sequence of terminals and nonterminals>

In a derivation, any instance of nonterminal (LHS) can be 
replaced by the sequence of terminals and nonterminals on the 
right side of the production

• A “derivation”: repeat above until no remaining nonterminals
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Alternative Notations

• There are several notations for productions in 
common use; all mean the same thing
ifStmt ::= if ( expr ) statement
ifStmt ➞ if ( expr ) statement
<ifStmt> ::= if ( <expr> ) <statement>

• Often there are several productions for one 
nonterminal – can choose any rule for 
nonterminal in different parts of derivation
– E.g. “A ::= BC | DE” is shorthand for 2 productions 

“A ::= BC” & “A ::= DE” 
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Parsing

• Parsing: reconstruct the derivation (syntactic 
structure) of a program

• In principle, a single recognizer could work 
directly from a concrete, character-by-
character grammar

• In practice this is (almost) never done
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Parsing & Scanning

• In real compilers the recognizer is split into two 
phases
– Scanner: translate input characters to tokens

• Also, report lexical errors like illegal characters and illegal symbols 
and skip past things with no semantic meaning in the language like 
comments, whitespace (in most languages)

– Parser: read token stream and reconstruct the derivation
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Scanner Parsersource tokens



Why Separate the Scanner and Parser?

• Simplicity & Separation of Concerns
– Scanner hides details from parser (comments, 

whitespace, input files, etc.)
– Parser becomes easier to build; has simpler input 

stream (tokens) and simpler interface for input
• Efficiency
– Scanner recognizes regular expressions – proper 

subset of context free grammars
• (But still often consumes a surprising amount of the 

compiler’s total execution time)

UW CSE 401/M501 Spring 2022 B-15



But …

• Not always possible to separate cleanly
• Example: C/C++/Java type vs identifier 
– Parser would like to know which names are types and 

which are identifiers, but…
– Scanner doesn’t know how things are declared

• So we hack around it somehow…
– Either use simpler grammar and disambiguate later, or 

communicate between scanner & parser
– Engineering issue: try to keep interfaces as simple & 

clean as possible
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Scanner Example

• Input text
// this statement does very little
if (x >= y) y = 42;

• Token Stream

– Notes: tokens are atomic items, not character strings; 
comments & whitespace are not tokens (in most languages –
counterexamples: Python indenting, Ruby and JavaScript newlines)
• Token objects sometimes carry associated data (e.g., numeric 

value, variable name)
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IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON



Typical Tokens in Programming 
Languages
• Operators & Punctuation

– + - * / ( ) { } [ ] ; : :: < <= == = != ! …
– Each of these is a distinct lexical class

• Keywords
– if while for goto return switch void …
– Each of these is also a distinct lexical class (not a string)

• Identifiers
– A single ID lexical class, but parameterized by actual id

• Integer constants
– A single INT lexical class, but parameterized by int value

• Other constants, etc.
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Principle of Longest Match

• In most languages, the scanner should pick the 
longest possible string to make up the next token if 
there is a choice

• Example
return maybe <= iffy;

should be recognized as 5 tokens

i.e., <= is one token, not two; “iffy” is an ID, not IF 
followed by ID(fy)
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RETURN ID(maybe) LEQ ID(iffy) SCOLON



Lexical Complications
• Most modern languages are free-form

– Layout doesn’t matter
– Whitespace separates tokens

• Alternatives  / variations
– Fortran – line oriented
– Haskell, Python – indentation and layout can imply 

grouping
– Ruby, JavaScript – newlines can end statements, except 

when they don’t
• And other confusions

– In C++ or Java, is >> a shift operator or the end of two 
nested templates or generic classes?
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Regular Expressions and FAs

• The lexical grammar (structure) of most 
programming languages can be specified with 
regular expressions

(Sometimes a little cheating is needed)

• Tokens can be recognized by a deterministic 
finite automaton
– Can be either table-driven or built by hand based 

on lexical grammar
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Regular Expressions

• Defined over some alphabet Σ
– For programming languages, alphabet is usually 

ASCII or Unicode
• If re is a regular expression, L(re) is the 

language (set of strings) generated by re
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Fundamental REs

re L(re ) Notes
a { a } Singleton set, for each a in Σ

ε { ε } Empty string

∅ { } Empty language
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Operations on REs

re L(re ) Notes
rs L(r)L(s) Concatenation

r|s L(r) ∪ L(s) Combination (union)

r* L(r)* 0 or more occurrences (Kleene
closure)
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• Precedence: * (highest), concatenation, | (lowest)
• Parentheses can be used to group REs as needed
• In “real” regular expression computer tools, need some way to 

“escape” literal ‘*’ or ‘|’ characters vs. operators – but don’t 
worry, or use different fonts, for math regexps



Examples

re Meaning
+ single + character
! single ! character
= single = character
!= 2-character sequence "!="
xyzzy 5-character sequence ”xyzzy”
(1|0)* 0 or more binary digits
(1|0)(1|0)* 1 or more binary digits
0|1(0|1)* sequence of binary digits with no 

leading 0’s, except for 0 itself
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Abbreviations

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (r | ε) 0 or 1 occurrence

[a-z] (a|b|…|z) 1 character in given range

[abxyz] (a|b|x|y|z) 1 of the given characters
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• The basic operations generate all possible regular 
expressions, but there are common abbreviations used for 
convenience.  Some examples:



More Examples

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9]*

[a-zA-Z][a-zA-Z0-9_]*
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More Examples

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9]*

[a-zA-Z][a-zA-Z0-9_]*
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Sequence of 1 or more a’s, b’s, c’s

Sequence of 0 or more a’s, b’s, c’s

Sequence of 1 or more decimal digits

Sequence of 1 or more decimal digits without
a leading 0
Identifiers in Your Favorite 
Programming Language™



Abbreviations

• Many systems allow abbreviations to make 
writing and reading definitions or 
specifications easier

name ::= re

– Restriction: abbreviations must not be circular 
(recursive) either directly or indirectly (else would 
likely be non-regular)
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Example

• Possible syntax for numeric constants
digit ::= [0-9]
digits ::= digit+
number ::= digits ( . digits )?  ( [eE] (+ | -)? digits ) ?

• How would you describe this set in English?
• What are some examples of legal constants 

(strings) generated by number ?
– What are the differences between these and numeric 

constants in YFPL?  (Your Favorite Programming Language)

UW CSE 401/M501 Spring 2022 B-30



Recognizing Regular Languages

• Finite automata can be used to recognize 
strings generated by regular expressions

• Can build by hand or automatically
– Reasonably straightforward, and can be done 

systematically
– Tools like Lex, Flex, JFlex et al. do this 

automatically, given a set of REs
– Same techniques used in grep, sed, other regular 

expression packages/tools
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Finite State Automaton
(a review on one slide)
• A finite set of states

– One marked as initial state
– One or more marked as final states
– States sometimes labeled or numbered

• A set of transitions from state to state
– Each labeled with symbol from Σ, or ε
– Common to allow multiple labels (symbols) on one edge to simplify diagrams

• Operate by reading input symbols (usually characters for scanners)
– Transition can be taken if labeled with current input symbol (consumes input)
– ε-transition can be taken at any time

• Accept when final state reached & no more input
– Slightly different in a scanner where the FSA is a subroutine that accepts the 

longest input string matching a token regular expression, starting at the current 
location in the input

• Reject if no transition possible, or no more input and not in final state (DFA)
– Some versions (including textbook) have an explicit “error” state and transitions 

to it on all “no legal transition possible” input.  OK to omit that for CSE 401
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Example: FSA for “cat”
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a tc

Initial state Final state



DFA vs NFA

• Deterministic Finite Automata (DFA)
– Unique choice of which transition to take on any char
– No ε transitions (arcs)

• Non-deterministic Finite Automata (NFA)
– >1 Choice of transition in at least one case
– Accept if some way to reach a final state on given input
– Reject if no possible way to final state
– I.e., “guess” right path, or backtrack, or try all in parallel
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FAs in Scanners

• Want DFA for speed (no backtracking)
• But conversion from regular expressions to 

NFA is easy
• Fortunately, there is a well-defined procedure 

for converting a NFA to an equivalent DFA 
(subset construction)
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From RE to NFA: base cases
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a

ε



r s
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r sε εε



r  | s
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r

sε ε

ε ε



r *
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r

ε

ε ε



Exercise
• Draw the NFA for:   b(at|ag) | bug
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ε



Exercise
• Draw the NFA for:   b(at|ag) | bug
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From NFA to DFA
• Subset construction

– Construct a DFA from the NFA, where each DFA state 
represents a set of NFA states

• Key idea
– Basically, concrete implementation of “try all in parallel”
– State of the DFA after reading some input is the set of all NFA 

states that could be reached after reading the same input
• Algorithm: example of a fixed-point computation
• If NFA has n states, DFA has at most 2n states 

=> DFA is finite, can construct in finite # steps
• Resulting DFA may have more states than needed

– See books for construction and minimization details
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Exercise
• Build DFA for b(at|ag)|bug, given the NFA
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Exercise (informal – but ok for us)
• Build DFA for b(at|ag)|bug, given the NFA
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t
g

Exercise (informal – but ok for us)
• Resulting  DFA for b(at|ag)|bug
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All  others

Σ



To Tokens
• A scanner is a DFA that finds the next token each time it is 

called
• Every “final” state of scanner DFA emits (returns) a token
• Tokens are the internal compiler names for the lexemes

== becomes EQUAL
( becomes LPAREN
while becomes WHILE
xyzzy becomes ID(xyzzy)

• You choose the names
• Also, there may be additional data … \r\n might count lines; 

token data structure might include source line numbers
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DFA => Code
• Option 1: Implement by hand

– DFA “state” is implicit in where you are in code
– read characters, perhaps look-ahead
– choices implemented using if and switch statements
– multiple return points, e.g., one per token type

• Pros
– straightforward to write
– fast

• Cons
– a lot of tedious work
– may have subtle differences from the language 

specification
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DFA => code [continued]
• Option 2: use tool to generate table driven scanner

– Rows: states of DFA
– Columns: input characters
– Entries: action

• Go to next state
• Accept token, go to start state
• Error

• Pros
– Convenient
– Exactly matches specification, if tool generated

• Cons
– “Magic”
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DFA => code [continued]

• Option 2a: use tool to implement option 1
– Transitions embedded in the code
– Choices use conditional statements, loops, etc.

• Pros
– Convenient
– Exactly matches specification, if tool generated

• Cons
– “Magic”
– Lots of code – big but potentially quite fast

• Would never write something like this by hand, but can 
generate it easily enough
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Example: DFA for hand-written 
scanner
• Idea: show a hand-written DFA for some typical programming 

language constructs
– Then use to outline a hand-written scanner

• Setting: Scanner is called when the parser needs a new token
– Scanner knows (saves) current position in input
– From there, use a DFA to recognize the longest possible input 

sequence that makes up a token and return that token; save 
updated position for next time

• Disclaimer: Example for illustration only – you’ll use tools for 
the course project
– & we’re abusing the DFA notation a little – not all arrows in the 

diagram correspond to consuming an input character, but 
meaning should be pretty obvious
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Scanner DFA Example (1)
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0

Accept LPAREN
(

2

Accept RPAREN
)

3

whitespace
or comments

Accept SCOLON
;

4

Accept EOF
end of input

1



Scanner DFA Example (2)
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Accept NEQ
! 6

Accept NOT7

5 =

[other ]

Accept LEQ
< 9

Accept LESS10

8 =

[other ]

Abusing notation 
here – [other] is 
not consumed

Abusing notation 
slightly here – [other] 

is not consumed



Scanner DFA Example (3)
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[0-9]

Accept INT12

11

[other ]

[0-9]



Scanner DFA Example (4)

• Strategies for handling identifiers vs keywords
– Hand-written scanner: look up identifier-like things in table of keywords to 

classify (good application of perfect hashing)
– Machine-generated scanner: generate DFA with appropriate transitions to 

recognize keywords
• Lots ’o states, but efficient (no extra lookup step)
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[a-zA-Z]

Accept ID or keyword14

13

[other ]

[a-zA-Z0-9_]



Implementing a Scanner by Hand –
Token Representation
• A token is a simple, tagged structure

public class Token {
public Kind kind;         // token’s lexical class
public int intVal; // integer value if kind = INT
public String id; // actual identifier if kind = ID
// useful extra information for debugging / diagnostics:
public int line;
public int column;
public enum Kind { // lexical classes:

EOF, //   “end of file” token
ID, //   identifier, not keyword
INT, //   integer
LPAREN, //   punctuation …
SCOLN,
WHILE, //   keywords …

// etc. etc. etc. …
}
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Simple Scanner Example
// global state and methods

static char nextch; // next unprocessed input character

// advance to next input char
void getch() { … }

// skip whitespace and comments
void skipWhitespace() { … }
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Scanner getToken() method
// return next input token
public Token getToken() {

Token result;

skipWhitespace();

if (no more input) {
result = new Token(Token.Kind.EOF); return result;

}

switch(nextch) {
case '(': result = new Token(Token.Kind.LPAREN); getch(); return result; 
case ‘)': result = new Token(Token.Kind.RPAREN); getch(); return result;
case ‘;': result = new Token(Token.Kind.SCOLON); getch(); return result;

// etc. …
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getToken() (2)
case '!': // ! or !=

getch();
if (nextch == '=') {

result = new Token(Token.Kind.NEQ); getch(); return result;
} else {

result = new Token(Token.Kind.NOT); return result;
}

case '<': // < or <=
getch();
if (nextch == '=') {

result = new Token(Token.Kind.LEQ); getch(); return result;
} else {

result = new Token(Token.Kind.LESS); return result;
}

// etc. …
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getToken() (3)
case '0': case '1': case '2': case '3': case '4': 
case '5': case '6': case '7': case '8': case '9': 

// integer constant
String num = nextch;
getch();
while (nextch is a digit) {

num = num + nextch; getch();
}
result = new Token(Token.Kind.INT, Integer.parseInt(num));
return result;

…
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getToken() (4)
case 'a': … case 'z':
case 'A': … case 'Z':  // id or keyword

string s = nextch; getch();
while (nextch is a letter, digit, or underscore) {

s = s + nextch; getch();
}
if (s is a keyword) {

result = new Token(keywordTable.getKind(s));
} else {

result = new Token(Token.Kind.ID, s);
}
return result;
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MiniJava Scanner Generation

• We’ll use the jflex tool to automatically create 
a scanner from a specification file

• We’ll use the CUP tool to automatically create 
a parser from a specification file

• Token class defs. are shared by jflex and CUP. 
Lexical classes are listed in CUP’s input file and 
it generates the token class definition.

• Details in this week’s sections
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Coming Attractions

• First homework: paper exercises on regular 
expressions, automata, etc.

• Then: first part of the compiler assignment –
the scanner

• Next topic: grammars and parsing
–Will do LR parsing first – we need this for the 

project – then LL (recursive-descent) parsing, 
which you should also know

– Good time to start reading ahead
UW CSE 401/M501 Spring 2022 B-64


