Masks are optional, but recommended—Covid is still with us.
Your colleagues (including course staff) thank you.

CSE 401/M501 — Compilers

Overview and Administrivia

Larry Ruzzo
Spring 2022

CSE 401/M501: Compiler Construction Home Calendar Assignments Project Resources Message Board

This is the home page for CSE 401 / CSE M 501. This, and the navigation bar at the top of this page, present important course content and resources. (L%Q\
News \X’L

3/27: Welcome to CSE 401 and CSE M 501, Spring Quarter, 2022. RQ

3/27: This website, excluding the Message Board link, is "student-ready", although additional items will trickle in. Please emai! 66 _]csifyou see
ambiguities, contradictions, missing or broken links, etc. (}

3/27: Masks, Lecture Streaming, etc.: especially note the info on lecture access in the "Lectures" paragraph bel~ 665 «d there.

Staff 00
C
Instructor: Larry Ruzzo. 60\

Teaching Assistants: Robert Burris, Morel Takougang, Jack Zhang, and Apollo Zhu. 6
Contact Info: Q‘
e Use the message board (linked from the navigation bar at the q&' .10st questions about course content or assignments. If you have a question, so do 20
.
of your classmates; this makes the discussion visible to ~ \
e Feel free to answer other students' questions; stude 6 _iisper than my own.
e "Private" messages on the discussion board ~ ,, appropriate for questions containing, e.g., putative answers or detailed code.
e Forotherissues, (health, personal circu~ «ner concerns) email cse401-staff[at]cs (this reaches Ruzzo and all TAs; despite the name, for use

it for CSE M 501, too), or if you pref- c}e‘ .at]cs. This will help us track things to best help you.
3

&

~cures will be in-person and "livestreamed" via Panopto ; see Masks, Livestreams, and Recordings for more on this. | will try to

. remote viewer's questions during lecture (but, honestly, | don't always see them...). Recordings will also be available on-demand via

.ner items will be posted, generally before each class, linked from the Calendar page.

e linked from the Calendar

6 } we will make occasional videos of tutorial ma

&.wursz TBD. Likely a mix of in-person and Zoom.

All in-person activities will follow then-current UW guidelines regarding masks, etc. Please be respectful of others' neeeds.

Agenda

Introductions

AC

W
W

ministrivia
nat’s a compiler?

ny you want to take this course ©

UW CSE 401/M501 Spring 2022

A-3

Logistics

* |t's (mostly) in-person this quarter

— Masks (mostly) optional but still recommended —
be smart, stay healthy, respect others’ needs,
avoid crowding in office hours, etc.

— Lectures (but not sections) will be recorded and
live-streamed on Panopto; suit yourself.

— In-person midterm + final planned
— In-person + Zoom office hours

UW CSE 401/M501 Spring 2022

A-7

Stay in Touch — Speak Up!

* This is a strange world we’re (still) in and there’s (still) a
lot of stress for many people (although maybe different
now)

* Please speak up if things are/aren’t going well

— We can’t help if we don’t know; stay in touch with TAs,
instructor, advising, friends, peers, family

 We're all in this together but not all in the same way,
so please show understanding and compassion for

each other and help when you can — both in and
outside of class

UW CSE 401/M501 Spring 2022 A-8

Who: Course staff

* |Instructor: Larry Ruzzo: UW faculty for a while;
CSE 401 7x veteran (but not for a long time)

* TAs: Robert Burris, Morel Takougang, Jack Zhang,
Apollo Zhu

 Get to know us —we’re here to help you succeed!

e Office Hrs: Probably a combination of Zoom and
IN-person. Starting ASAP — watch for announcements.

UW CSE 401/M501 Spring 2022 A-9

Credits

The course builds on many years of successful
offerings by many faculty here and at other
schools, most importantly by UW'’s Prof. Hal

Perkins, but | won’t attempt to provide detailed
attributions.

UW CSE 401/M501 Spring 2022 A-11

CSE M 501

* Enhanced version for 5t"-year BS/MS students.

401 and M501 share a lot: the same lectures,
sections, assighments, infrastructure, ...

* The key difference is that M501 students will
have to do a significant addition to the
project; see course website for details.

UW CSE 401/M501 Spring 2022 A-12

Background

* Official prerequisites:
— CSE 332 (data abstractions)
* and therefore CSE 311 (Foundations)

— CSE 351 (hardware/software interface, x86_64)

* Also very useful, but not required:

— CSE 331 (software design & implementation)
— CSE 341 (programming languages)
— Who's taken these?

UW CSE 401/M501 Spring 2022 A-13

Lectures & Sections

Both valuable

All material posted, but be there! Take notes!

Lectures: in-person, live-streamed, recorded

Sections: NOT recorded. Additional examples

and exercises plus project details and tools

— We will have sections this week (Thursday).

* Watch time schedule/email/Ed for possible room

changes!

UW CSE 401/M501 Spring 2022

A-14

Communications

* Course web site (www.cs.uw.edu/401)

* Discussion board — Ed (coming asap)
— For anything related to the course
— Join in! Help each other out. Staff will contribute.

— Also use for private messages with too-specific-to-
post questions, code, etc.

— Staff will also use to post announcements

* Email to cse401-staff[at]cs for things not
appropriate for Ed, that need followup, ...

UW CSE 401/M501 Spring 2022 A-16

Grading

* | plan to have normal in-person midterm and
final exams

* Roughly:
— 50% project, done with a partner
— 20% individual written homework
— 10% midterm

— 20% final
May be adjusted as needed/appropriate

UW CSE 401/M501 Spring 2022 A-18

Academic Integrity

 We want a collegial group helping each other succeed!

* But: you must never misrepresent work done by
someone else as your own, without proper credit if
appropriate, or assist others to do the same

e Read the course policy carefully

* We trust you to behave ethically

— | have little sympathy for violations of that trust

— Honest work is the most important feature of a university
(or engineering or business or life). Anything less
disrespects your instructor, your colleagues, and yourself

UW CSE 401/M501 Spring 2022 A-19

Course Project

e Best way to learn about compilers is to build
one!

* Course project: MiniJava compiler

— Core parts of Java — classes, objects, etc.
— Generate executable x86-64 code & run it
— Completed in steps through the quarter

* End point is the most important part, but intermediate
milestones keep you on schedule and allow feedback

— Additional work for CSE M 501 students — see web

UW CSE 401/M501 Spring 2022 A-20

Project Groups

* You should work in pairs

— Pick a partner now to work with throughout quarter — we
need this info by early next week

— CSE M 501 students should pair up with someone else in
M501 (401 — M 501 switches are possible if it makes
sense for individual(s) involved)

— Collaboration via internet works surprisingly well, so you
don’t need to (but may) hang out together in the labs.

 We'll provide per-group accounts on department gitlab
server for groups to store and synchronize their work;
we’ll pull files from there for project feedback / grading

— Anybody new to CSE Gitlab/Git?

UW CSE 401/M501 Spring 2022 A-21

Compilers

\ da
b, 9

)
.

Crafting

e Official text:

— Cooper & Torczon, Engineering a Compiler.
Available free online through UW Library Safari
books subscription. See syllabus.

 Three other good books; enrichment &
alternative perspectives

— Appel, Modern Compiler Implementation in
Java, 2nd ed. MiniJava is from here.

— Aho, Lam, Sethi, Ullman, “Dragon Book”
— Fischer, Cytron, LeBlanc, Crafting a Compiler

UW CSE 401/M501 Spring 2022 A-23

Compilers: What/Why

* “Algorithms”: communications between people about

rd

computations

* “Programs”: communications
between people and machines
about computations

int nPos = 0;
intk =0;
while (k < length) {
if (a[k] > O) {nPos++:}

}

 Compilers automate tedious Programming The Eniac
and error-prone detail-work to bridge the people-facing end
of that conversation to the deeply rigid 0-1 world at the other
end. (Where’s k? Where’s a[k]? Is it >07? ...)

UW CSE 401/M501 Spring 2022 A-25

Structure of a Compiler

* At a high level, a compiler has two pieces:

— Front end: analysis

* Read source program and discover its structure and
meaning

— Back end: synthesis

* Generate equivalent target language program

UW CSE 401/M501 Spring 2022

A-26

Compiler must...

e Recognize legal programs (& complain about illegal
ones)

* Generate correct code

— Compiler can attempt to improve (“optimize”) code, but
must not change behavior (meaning)

* Manage runtime storage of all variables/data

* Agree with OS & linker on target format

UW CSE 401/M501 Spring 2022

A-27

Implications

 Phases communicate using some sort of
Intermediate Representation(s) (IR)
— Front end maps source into IR
— Back end maps IR to target machine code

— Often multiple IRs — higher level at first, lower level in later
phases

UW CSE 401/M501 Spring 2022 A-28

tokens IR

Front End

e Usually split into two parts

— Scanner: Responsible for converting character stream to
token stream: keywords, operators, variables, constants, ...
* Also: strips out white space, comments

— Parser: Read token stream; validate structure; generate IR

* Either here or shortly after, perform semantics analysis to check
for things like type errors, etc.

* Both of these can be generated automatically

— Use a formal grammar to specify the source language

— Tools read the grammar and generate scanner & parser
(lex/yacc or flex/bison for C/C++, JFlex/CUP for Java)

UW CSE 401/M501 Spring 2022 A-29

Scanner Example

* Input text

// this statement does very little
if (x >=vy) y = 42;

e Token Stream

IF | | LPAREN | | ID(x) || GEQ | | ID(y)

RPAREN | | ID(y) | | BECOMES | | INT(42) | | SCOLON

— Notes: tokens are atomic items, not character strings;

comments & whitespace are not tokens (in most languages -
counterexamples: Python indenting, Ruby and JavaScript newlines)

* Token objects sometimes carry associated data (e.g., numeric
value, variable name)

UW CSE 401/M501 Spring 2022 A-30

Parser Output (IR)

* Given token stream from scanner, the parser
must produce output that captures the meaning
of the program

* Most common parser output is an abstract syntax
tree (AST)

— Essential meaning of program without syntactic noise
— E.g., nodes are operations, children are operands

* Many different forms
— Engineering tradeoffs change over time

— Tradeoffs (and IRs) can also vary between different
phases of a single compiler

UW CSE 401/M501 Spring 2022 A-31

Scanner/Parser Example

Original source program:

// this statement does very little
if (x >= vy)

* Token Stream

y = 42;

IF | | LPAREN

ID(x)

GEQ

ID(y)

RPAREN

ID(y)

BECOMES

INT(42)

SCOLON

e Abstract Syntax Tree

Eg no
(I)l I

. 3.4

UW CSE 401/M501 Spring 2022 A-32

Static Semantic Analysis

* During or (usually) after parsing, check that the
program is legal and collect info for the back end

— Type checking

— Verify language requirements like proper declarations,
etc.

— Preliminary resource allocation

— Collect other information needed by back end analysis
and code generation

* Key data structure: Symbol Table(s)
— Maps names -> meaning/types/details

UW CSE 401/M501 Spring 2022 A-33

Back End

* Responsibilities
— Translate IR into target code

— Should produce “good” code
» “good” = fast, compact, low power (pick some)

— Should use machine resources effectively
* Registers
* |[nstructions
* Memory hierarchy

UW CSE 401/M501 Spring 2022 A-34

Back End Structure

* Typically two major parts

— “Optimization” — code improvement — change correct
code into semantically equivalent “better” code

* Examples: common subexpression elimination, constant
folding, code motion (move invariant computations outside of
loops), function inlining (replace call with body of function)

e Optimization phases often interleaved with analysis
— Target Code Generation (machine specific)
* Instruction selection & scheduling, register allocation

* Usually walk the AST and generate lower-level intermediate
code before optimization

UW CSE 401/M501 Spring 2022 A-35

The Result

* |Input * QOutput
if (x >=1vy)
y = 42, movl 16(%rbp),%edx

movl -8(%rbp), %eax
cmpl %eax, %edx

- ilL17

movl $42, -8(%rbp)

L17:
UW CSE 401/M501 Spring 2022 A-36

o

Why Study Compilers? (1)

 Become a better programmer(!)

— Insight into interaction between languages, compilers,
and hardware

— Understanding of implementation techniques, how
code maps to hardware; fast/slow/mem hungry?

— Better intuition about what your code does

— Understanding how compilers optimize code helps
you write code that is easier to optimize

* And avoid wasting time doing “optimizations” that the
compiler will do better, and avoid “clever” code that
confuses the compiler and makes thing worse

UW CSE 401/M501 Spring 2022 A-44

Why Study Compilers? (2)

 Compiler techniques are everywhere
— Parsing (“little” languages, program input, scripts,...)
— Software tools (verifiers, checkers, ...)
— Database engines, query languages
— Domain-specific languages, ML, data science

— Text processing
* Tex/LaTex -> dvi -> Postscript -> pdf
— Hardware: VHDL; model-checking tools
— Mathematics (Mathematica, Matlab, SAGE)

UW CSE 401/M501 Spring 2022 A-45

Why Study Compilers? (3)

* Fascinating blend of theory and engineering

— Lots of beautiful theory around compilers
e Parsing, scanning, static analysis
— Interesting engineering challenges and tradeoffs,
particularly in optimization (code improvement)
e Ordering of optimization phases
* What works for some programs can be bad for others

— Plus some very difficult problems (NP-hard or worse)
* E.g., register allocation is equivalent to graph coloring

* Need to come up with “good enough” approximations /
heuristics

UW CSE 401/M501 Spring 2022 A-46

Why Study Compilers? (4)

* Draws ideas from many parts of CSE
— Al: Greedy algorithms, heuristic search
— Algorithms: graphs, dynamic programming, approximation

— Theory: Grammars, DFAs and PDAs, pattern matching,
fixed-point algorithms

— Systems: Allocation & naming, synchronization, locality

— Architecture: pipelines, instruction set use, memory
hierarchy management, locality

UW CSE 401/M501 Spring 2022 A-47

Why Study Compilers? (5)

* You might even write a compiler some day!
* You will write parsers and interpreters for little
languages, if not bigger things

— Command languages, configuration files, XML,
JSON, network protocols, ...

 Don’t be surprised if it’s handy in a job
Interview

* And if you like working with compilers and are
good at it there are many jobs available...

UW CSE 401/M501 Spring 2022 A-48

Any guestions?

* Your job is to ask questions to be sure you
understand what’s happening and to slow me
down

— Otherwise, I'll barrel on ahead ©

UW CSE 401/M501 Spring 2022 A-54

Coming Attractions

* Quick review of formal grammars

* Lexical analysis —scanning & regular
expressions
— Background for first part of the project
— Next 2-3 lectures + Thursday’s sections

* Followed by parsing ... Start reading: ch. 1, 2.1-
2.4

— Entire book available through Safari Online to UW
community — see syllabus for link

UW CSE 401/M501 Spring 2022 A-56

Before next time...

* Familiarize yourself with the course web site

* Esp. syllabus, academic integrity, calendar,

* Find a partner!
— And meet other people in the class too!! ©

UW CSE 401/M501 Spring 2022 A-58

