
CSE 401/M501 – Compilers

Overview and Administrivia
Larry Ruzzo
Spring 2022

Masks are optional, but recommended–Covid is still with us.
Your colleagues (including course staff) thank you.

UW CSE 401/M501 Spring 2022 A-2http
s://
cou
rse
s.cs
.wa
shin
gto
n.e
du/
cou
rse
s/cs
e40
1/2
2sp
/

Agenda

• Introductions
• Administrivia
• What’s a compiler?
• Why you want to take this course J

UW CSE 401/M501 Spring 2022 A-3

Logistics

• It’s (mostly) in-person this quarter
– Masks (mostly) optional but still recommended –

be smart, stay healthy, respect others’ needs,
avoid crowding in office hours, etc.

– Lectures (but not sections) will be recorded and
live-streamed on Panopto; suit yourself.

– In-person midterm + final planned
– In-person + Zoom office hours

UW CSE 401/M501 Spring 2022 A-7

Stay in Touch – Speak Up!
• This is a strange world we’re (still) in and there’s (still) a

lot of stress for many people (although maybe different
now)

• Please speak up if things are/aren’t going well
– We can’t help if we don’t know; stay in touch with TAs,

instructor, advising, friends, peers, family

• We’re all in this together but not all in the same way,
so please show understanding and compassion for
each other and help when you can – both in and
outside of class

UW CSE 401/M501 Spring 2022 A-8

Who: Course staff

• Instructor: Larry Ruzzo: UW faculty for a while;
CSE 401 7x veteran (but not for a long time)

• TAs: Robert Burris, Morel Takougang, Jack Zhang,
Apollo Zhu

• Get to know us – we’re here to help you succeed!

• Office Hrs: Probably a combination of Zoom and
in-person. Starting ASAP – watch for announcements.

UW CSE 401/M501 Spring 2022 A-9

Credits

The course builds on many years of successful
offerings by many faculty here and at other
schools, most importantly by UW’s Prof. Hal
Perkins, but I won’t attempt to provide detailed
attributions.

UW CSE 401/M501 Spring 2022 A-11

CSE M 501

• Enhanced version for 5th-year BS/MS students.

• 401 and M501 share a lot: the same lectures,
sections, assignments, infrastructure, …

• The key difference is that M501 students will
have to do a significant addition to the
project; see course website for details.

UW CSE 401/M501 Spring 2022 A-12

Background

• Official prerequisites:
– CSE 332 (data abstractions)
• and therefore CSE 311 (Foundations)

– CSE 351 (hardware/software interface, x86_64)

• Also very useful, but not required:
– CSE 331 (software design & implementation)
– CSE 341 (programming languages)
– Who’s taken these?

UW CSE 401/M501 Spring 2022 A-13

Lectures & Sections

• Both valuable
• All material posted, but be there! Take notes!
• Lectures: in-person, live-streamed, recorded
• Sections: NOT recorded. Additional examples

and exercises plus project details and tools
– We will have sections this week (Thursday).
• Watch time schedule/email/Ed for possible room

changes!

UW CSE 401/M501 Spring 2022 A-14

Communications

• Course web site (www.cs.uw.edu/401)
• Discussion board – Ed (coming asap)

– For anything related to the course
– Join in! Help each other out. Staff will contribute.
– Also use for private messages with too-specific-to-

post questions, code, etc.
– Staff will also use to post announcements

• Email to cse401-staff[at]cs for things not
appropriate for Ed, that need followup, …

UW CSE 401/M501 Spring 2022 A-16

Grading

• I plan to have normal in-person midterm and
final exams

• Roughly:
– 50% project, done with a partner
– 20% individual written homework
– 10% midterm
– 20% final
May be adjusted as needed/appropriate

UW CSE 401/M501 Spring 2022 A-18

Academic Integrity

• We want a collegial group helping each other succeed!
• But: you must never misrepresent work done by

someone else as your own, without proper credit if
appropriate, or assist others to do the same

• Read the course policy carefully
• We trust you to behave ethically
– I have little sympathy for violations of that trust
– Honest work is the most important feature of a university

(or engineering or business or life). Anything less
disrespects your instructor, your colleagues, and yourself

UW CSE 401/M501 Spring 2022 A-19

Course Project

• Best way to learn about compilers is to build
one!

• Course project: MiniJava compiler
– Core parts of Java – classes, objects, etc.
– Generate executable x86-64 code & run it
– Completed in steps through the quarter
• End point is the most important part, but intermediate

milestones keep you on schedule and allow feedback

– Additional work for CSE M 501 students – see web

UW CSE 401/M501 Spring 2022 A-20

Project Groups
• You should work in pairs
– Pick a partner now to work with throughout quarter – we

need this info by early next week
– CSE M 501 students should pair up with someone else in

M501 (401 ➝ M 501 switches are possible if it makes
sense for individual(s) involved)

– Collaboration via internet works surprisingly well, so you
don’t need to (but may) hang out together in the labs.

• We’ll provide per-group accounts on department gitlab
server for groups to store and synchronize their work;
we’ll pull files from there for project feedback / grading
– Anybody new to CSE Gitlab/Git?

UW CSE 401/M501 Spring 2022 A-21

Books

• Official text:
– Cooper & Torczon, Engineering a Compiler.

Available free online through UW Library Safari
books subscription. See syllabus.

• Three other good books; enrichment &
alternative perspectives
– Appel, Modern Compiler Implementation in

Java, 2nd ed. MiniJava is from here.
– Aho, Lam, Sethi, Ullman, “Dragon Book”
– Fischer, Cytron, LeBlanc, Crafting a Compiler

UW CSE 401/M501 Spring 2022 A-23

Compilers: What/Why
• “Algorithms”: communications between people about

computations
• “Programs”: communications

between people and machines
about computations

int nPos = 0;
int k = 0;
while (k < length) {

if (a[k] > 0) {nPos++;}
}

• Compilers automate tedious
and error-prone detail-work to bridge the people-facing end
of that conversation to the deeply rigid 0-1 world at the other
end. (Where’s k? Where’s a[k]? Is it >0? ...)

UW CSE 401/M501 Spring 2022 A-25

Programming The Eniac

Structure of a Compiler

• At a high level, a compiler has two pieces:
– Front end: analysis
• Read source program and discover its structure and

meaning

– Back end: synthesis
• Generate equivalent target language program

UW CSE 401/M501 Spring 2022 A-26

Source TargetFront End Back End

Compiler must…

• Recognize legal programs (& complain about illegal
ones)

• Generate correct code
– Compiler can attempt to improve (“optimize”) code, but

must not change behavior (meaning)

• Manage runtime storage of all variables/data
• Agree with OS & linker on target format

UW CSE 401/M501 Spring 2022 A-27

Source TargetFront End Back End

Implications

• Phases communicate using some sort of
Intermediate Representation(s) (IR)
– Front end maps source into IR
– Back end maps IR to target machine code
– Often multiple IRs – higher level at first, lower level in later

phases

UW CSE 401/M501 Spring 2022 A-28

Source TargetFront End Back End

Front End

• Usually split into two parts
– Scanner: Responsible for converting character stream to

token stream: keywords, operators, variables, constants, …
• Also: strips out white space, comments

– Parser: Read token stream; validate structure; generate IR
• Either here or shortly after, perform semantics analysis to check

for things like type errors, etc.

• Both of these can be generated automatically
– Use a formal grammar to specify the source language
– Tools read the grammar and generate scanner & parser

(lex/yacc or flex/bison for C/C++, JFlex/CUP for Java)

UW CSE 401/M501 Spring 2022 A-29

Scanner Parsersource tokens IR

Scanner Example

• Input text
// this statement does very little
if (x >= y) y = 42;

• Token Stream

– Notes: tokens are atomic items, not character strings;
comments & whitespace are not tokens (in most languages –
counterexamples: Python indenting, Ruby and JavaScript newlines)
• Token objects sometimes carry associated data (e.g., numeric

value, variable name)

UW CSE 401/M501 Spring 2022 A-30

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

Parser Output (IR)

• Given token stream from scanner, the parser
must produce output that captures the meaning
of the program

• Most common parser output is an abstract syntax
tree (AST)
– Essential meaning of program without syntactic noise
– E.g., nodes are operations, children are operands

• Many different forms
– Engineering tradeoffs change over time
– Tradeoffs (and IRs) can also vary between different

phases of a single compiler

UW CSE 401/M501 Spring 2022 A-31

Scanner/Parser Example

• Token Stream • Abstract Syntax Tree

UW CSE 401/M501 Spring 2022 A-32

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Original source program:
// this statement does very little
if (x >= y) y = 42;

E.g., no
“(”, “)”, “;”

Static Semantic Analysis

• During or (usually) after parsing, check that the
program is legal and collect info for the back end
– Type checking
– Verify language requirements like proper declarations,

etc.
– Preliminary resource allocation
– Collect other information needed by back end analysis

and code generation
• Key data structure: Symbol Table(s)
– Maps names -> meaning/types/details

UW CSE 401/M501 Spring 2022 A-33

Back End

• Responsibilities
– Translate IR into target code
– Should produce “good” code
• “good” = fast, compact, low power (pick some)

– Should use machine resources effectively
• Registers
• Instructions
• Memory hierarchy

UW CSE 401/M501 Spring 2022 A-34

Back End Structure

• Typically two major parts
– “Optimization” – code improvement – change correct

code into semantically equivalent “better” code
• Examples: common subexpression elimination, constant

folding, code motion (move invariant computations outside of
loops), function inlining (replace call with body of function)

• Optimization phases often interleaved with analysis
– Target Code Generation (machine specific)

• Instruction selection & scheduling, register allocation
• Usually walk the AST and generate lower-level intermediate

code before optimization

UW CSE 401/M501 Spring 2022 A-35

The Result

• Input
if (x >= y)

y = 42;

• Output

movl 16(%rbp),%edx
movl -8(%rbp),%eax
cmpl %eax, %edx
jl L17
movl $42, -8(%rbp)

L17:

UW CSE 401/M501 Spring 2022 A-36

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Why Study Compilers? (1)

• Become a better programmer(!)
– Insight into interaction between languages, compilers,

and hardware
– Understanding of implementation techniques, how

code maps to hardware; fast/slow/mem hungry?
– Better intuition about what your code does
– Understanding how compilers optimize code helps

you write code that is easier to optimize
• And avoid wasting time doing “optimizations” that the

compiler will do better, and avoid “clever” code that
confuses the compiler and makes thing worse

UW CSE 401/M501 Spring 2022 A-44

Why Study Compilers? (2)

• Compiler techniques are everywhere
– Parsing (“little” languages, program input, scripts,…)
– Software tools (verifiers, checkers, …)
– Database engines, query languages
– Domain-specific languages, ML, data science
– Text processing

• Tex/LaTex -> dvi -> Postscript -> pdf

– Hardware: VHDL; model-checking tools
– Mathematics (Mathematica, Matlab, SAGE)

UW CSE 401/M501 Spring 2022 A-45

Why Study Compilers? (3)

• Fascinating blend of theory and engineering
– Lots of beautiful theory around compilers

• Parsing, scanning, static analysis
– Interesting engineering challenges and tradeoffs,

particularly in optimization (code improvement)
• Ordering of optimization phases
• What works for some programs can be bad for others

– Plus some very difficult problems (NP-hard or worse)
• E.g., register allocation is equivalent to graph coloring
• Need to come up with “good enough” approximations /

heuristics

UW CSE 401/M501 Spring 2022 A-46

Why Study Compilers? (4)

• Draws ideas from many parts of CSE
– AI: Greedy algorithms, heuristic search
– Algorithms: graphs, dynamic programming, approximation
– Theory: Grammars, DFAs and PDAs, pattern matching,

fixed-point algorithms
– Systems: Allocation & naming, synchronization, locality
– Architecture: pipelines, instruction set use, memory

hierarchy management, locality

UW CSE 401/M501 Spring 2022 A-47

Why Study Compilers? (5)

• You might even write a compiler some day!
• You will write parsers and interpreters for little

languages, if not bigger things
– Command languages, configuration files, XML,

JSON, network protocols, …
• Don’t be surprised if it’s handy in a job

interview
• And if you like working with compilers and are

good at it there are many jobs available…

UW CSE 401/M501 Spring 2022 A-48

Any questions?

• Your job is to ask questions to be sure you
understand what’s happening and to slow me
down
– Otherwise, I’ll barrel on ahead J

UW CSE 401/M501 Spring 2022 A-54

Coming Attractions

• Quick review of formal grammars
• Lexical analysis – scanning & regular

expressions
– Background for first part of the project
– Next 2-3 lectures + Thursday’s sections

• Followed by parsing … Start reading: ch. 1, 2.1-
2.4
– Entire book available through Safari Online to UW

community – see syllabus for link

UW CSE 401/M501 Spring 2022 A-56

Before next time…

• Familiarize yourself with the course web site

• Esp. syllabus, academic integrity, calendar,

• Find a partner!
– And meet other people in the class too!! J

UW CSE 401/M501 Spring 2022 A-58

