
CSE	401/M501	22Sp	Homework	4	

Due:	Thursday,	June	2	by	11	pm.		Late	submissions	only	until	June	4,	11	pm,	even	if	you	haven’t	
exhausted	your	“late	days”,	so	that	we	may	publish	a	solution	before	the	final.		
	
As	before,	submit	via	Gradescope.		If	possible,	don't	split	the	solution	to	a	problem	across	a	page	break,	and	
please	keep	it	legible.		Show	your	work	to	help	us	award	partial	credit	if	appropriate,	and	for	TA	sanity.	You	
should	do	this	assignment	individually.	
	
1.	(leaders,	basic	blocks,	and	control	flow	graphs)		
(Appel)		In	the	program	at	right,	given	as	a	
sequence	of	3-address	instructions:		
(a)	List	the	numbers	of	the	instructions	that	are	
leaders	(a	first	instruction	in	some	basic	block)	.		
Hint:	recall	that	the	first	instruction	(#1)	is	a	
leader,	the	target	of	every	branch/jump/goto	is	a	
leader,	and	every	instruction	following	a	
branch/jump/goto	is	a	leader.	
	
(Hint:	The	discussion	of	basic	blocks	and	how	to	
identify	leaders	in	the	Intermediate	
Representations	(IR)	lecture	might	be	helpful.)	
	
(b)	Draw	the	Control	Flow	Graph	(CFG)	for	this	
program.		The	nodes	in	the	graph	should	be	basic	
blocks.		Each	basic	block	starts	with	a	leader	
instruction	and	should	contain	all	subsequent	
instructions	up	to	but	not	including	the	next	leader		
that	begins	a	different	basic	block.		There	should	be	edges	from	each	basic	block	to	each	of	its	successors.	
	
Each	basic	block	should	show	in	sequential	order	the	instructions	contained	in	it.		Write	both	the	
instruction(s)	and	their	original	instruction	number(s)	in	the	CFG	graph	nodes.	
	
Please	number	the	basic	blocks	in	your	CFG	as	follows	so	the	graphs	will	be	consistent	for	grading:	The	first	
basic	block	beginning	with	instruction	#1	should	be	basic	block	#1.		The	remaining	basic	blocks	should	be	
given	sequential	numbers	2,	3,	…	in	ascending	order	of	their	leader	instruction	numbers.		In	other	words,	the	
first	instruction	in	block	2	should	have	a	larger	instruction	number	than	the	first	instruction	in	block	1	and	a	
smaller	instruction	number	than	the	first	instruction	in	block	3,	etc.	
	
2.	(dataflow	analysis	–	live	variables)		(a)	Use	the	dataflow	analysis	framework	described	in	class	to	
compute	the	set	of	variables	that	are	live	at	the	beginning	of	each	basic	block	in	the	control	flow	graph	from	
question	#1.	
	
Recall	that	the	live	variable	dataflow	problem	is	formulated	from	the	following	sets.		For	each	basic	block	b,	
define	
	

• use[b]	=	variables	used	in	b	before	any	def	
• def[b]	 =	variables	defined	in	b	and	not	killed	later	in	b	
• in[b]	 =	variables	live	on	entry	to	b	
• out[b]	 =	variables	live	on	exit	from	b	

	
To	compute	the	variables	that	are	live	at	the	beginning	of	each	basic	block	b	(i.e.,	in[b]),	first	initialize	

1. m	=	0	
2. v	=	0	
3. if	v	>=	n	goto	#15	
4. r	=	v	
5. s	=	0	
6. if	r	<	n	goto	#9	
7. v	=	v	+	1	
8. goto	#3	
9. x	=	M[r]								#	contents	of	element	r	of	array	M	
10. s	=	s	+	x	
11. if	s	<=	m	goto	#13	
12. m	=	s	
13. r	=	r	+	1	
14. goto	#6;	
15. return	m	



CSE	401/M501	22Sp	Homework	4	

	
	 in[b]	=	out[b]	=	∅	
	
Then	iteratively	solve	the	following	set	of	equations	by	updating	the	in	and	out	sets	for	each	block	until	no	
further	changes	occur:	
	

• out[b]	=	ÈsÎsucc[b]	in[s]	

• in[b]	=	use[b]	È	(out[b]	–	def[b])	
	
Your	analysis	should	include	all	of	the	scalar	variables	in	the	original	program,	but	not	the	array	M.		Show	
your	results	for	use/def	and	the	in/out	iteration	in	a	table	like	the	one	in	Dataflow	lecture	slides	O-32..O-34	
(approximately),	but	show	one	row	per	block.		List,	and	process,	blocks	in	reverse	order	of	their	numbers,	as	
in	the	lecture	example,	and	calculate	out[b]	before	in[b]	for	each	block	b.		Include	enough	columns	to	show	
that	a	fixed	point	has	been	reached;	I	think	3-4	in/out	column	pairs	should	suffice.	
	
Use	the	instruction	and	block	numbers	and	the	control	flow	graph	from	your	answer	to	problem	1.	
	
(b)	Are	any	variables	in	the	program	uninitialized?		(that	is,	potentially	used	before	they	are	defined?).		
Justify	your	answer	in	terms	of	the	results	of	the	live	variable	dataflow	analysis	from	part	(a).	
	
3.	(dominators)	(based	on	Cooper/	Torczon	ex	6.	p.	
536-7)	(a)	Compute	the	dominator	tree	for	the	
control	flow	graph	at	right.,	then	(b)	compute	the	
dominance	frontier	of	each	node.	
	
4.	(ssa)	Translate	the	CFG	from	problem	#	3	into	
SSA	form.		You	only	need	to	show	the	final	code	
after	Φ-functions	have	been	added	and	variables	
have	been	renamed.		(If	you	want	to	edit	your	
answer	on	a	computer,	the	course	assignment	
calendar	page	contains	a	link	to	the	original	ppt	
slide	with	the	diagram.		However,	don’t	feel	
obligated	to	do	this	–	it	might	be	a	time	sink	
compared	to	just	drawing	the	result.)	
	
Your	answer	should	include	all	of	the	Φ-functions	
required	by	the	Dominance	Frontier	Criteria	(or	
alternatively	the	path	convergence	criteria,	which	
places	the	same	set	of	Φ-functions),	but	no	
additional	ones.		In	other	words,	you	need	to	include	all	of	the	Φ-functions	to	satisfy	the	criteria	but	should	
not	have	extra	ones	that	are	not	required.		It	should	include	all	Φ-functions	that	satisfy	the	Dominance	
Frontier	Criteria	even	if	some	of	those	are	assignments	to	variables	that	are	never	used	(i.e.,	dead	
assignments).		Answers	that	have	a	couple	of	extraneous	Φ-functions	will	receive	almost	full	credit,	but	
answers	that,	for	example,	use	a	maximal-SSA	strategy	of	placing	Φ-functions	for	all	variables	at	the	
beginning	of	every	block	will	not	be	looked	on	with	favor.	

a = a + 1
d = a + b

B0

f = b – dB1 f = d * 8
b = a + f

B2

d = b * 2
b = a + 1

B3 d = b + 1B4

b = b - dB5

f = b + d
d = a + b

B6


