
Section 4: CUP & LL
CSE 401/M501

Adapted from Spring 2021

Administrivia

• Homework 2 is due tonight!
- You have late days if you need them

• Parser is due one week from today
- Be sure to check your Scanner feedback

• Watch demo video on CUP & AST Hierarchies
- Will be posted on calendar soon

Language Hierarchies

The CUP parser generator
• Uses LALR(1)

– A little weaker (less selective), but many fewer states than LR(1) parsers

– Handles most realistic programming language grammars

– More selective than SLR (or LR(0)) about when to do reductions, so works for
more languages

The CUP parser generator

• Based on LALR(1)

• CUP can resolve some ambiguities itself
– Precedence for reduce/reduce conflicts

– Associativity for shift/reduce conflicts

– Useful for our project for things like arithmetic expressions (exp+exp, exp*exp
for fewer non-terminals, then add precedence and associativity declarations).
Read the docs

UW CSE 401/M501 Autumn 2021 E-6

if X ::= Y1 Y2 Y3 ... Yk

Y = nullable

:

if X ::= Y1 Y2 Y3 ... Yk :

if X ::= Y1 Y2 Y3 ... Yk :

if X ::= Y1 Y2 Y3 ... Yk :

make nullable X copy FIRST[Y3] to FIRST[X]

copy FOLLOW[X] to FOLLOW[Y2] copy FIRST[Y3] to FOLLOW[Y1]

1 2

3 4

Computing FIRST, FOLLOW, & nullable (3)

repeat
for each production X := Y1 Y2 … Yk

if Y1 … Yk are all nullable (or if k = 0)
set nullable[X] = true

for each i from 1 to k and each j from i +1 to k
if Y1 … Yi-1 are all nullable (or if i = 1)

add FIRST[Yi] to FIRST[X]
if Yi+1 … Yk are all nullable (or if i = k)

add FOLLOW[X] to FOLLOW[Yi]
if Yi+1 … Yj-1 are all nullable (or if i+1=j)

add FIRST[Yj] to FOLLOW[Yi]
Until FIRST, FOLLOW, and nullable do not change

Computing FIRST, FOLLOW, and nullable

L L (k)

Left-to-Right
Only takes one pass,

performed from the left

Leftmost
At each point, finds the

derivation for the leftmost
handle (top-down)

k Terminal
Lookahead

Must determine derivation
from the next unparsed

terminal in the string
Typically k = 1, just like LR

• LL(k) scans left-to-right, builds leftmost derivation,
and looks ahead k symbols

• The LL condition enable the parser to choose
productions correctly with 1 symbol of look-ahead

• We can often transform a grammar to satisfy this if
needed

LL(k) parsing

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

LL(1) parsing: An example top-down derivation of “a z x”

z xa

Lookahead Remaining

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

z xa

Lookahead Remaining

S

B

a

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

B

a x

C

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

B

a z x

C

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

x

Lookahead Remaining

S

B

a z x

C

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”
S

B

a z x

C

Successful parse!

For each nonterminal in the grammar:

– Its productions must have disjoint FIRST sets

– If it is nullable, the FIRST sets of its productions must be disjoint from
its FOLLOW set

**We can often transform a grammar to satisfy this if needed

A ::= x | B
B ::= x

A ::= x | B
B ::= y

S ::= A x
A ::= ε | x

S ::= A y
A ::= ε | x

LL Condition

0. A ::= αβ | αγ

Canonical FIRST Conflict

Problem

The FIRST sets of the right-hand sides for
the SAME NON-TERMINAL must be disjoint!

Let’s try a top-down derivation of αβ

βα

Lookahead Remaining

A

βα

A

γα

OR

0. A ::= αβ | αγ

Let’s try a top-down derivation of αβ

A

βα

A

γα

WHICH
ONE?

0. A ::= αβ | αγ

We don’t know!

We are using an LL(1)
parser, we can’t see

more than α!

Canonical FIRST Conflict Solution

0. A ::= α Tail
1. Tail ::= β | γ

Solution

0. A ::= αβ | αγ
Factor out the
common prefix

When multiple productions of a nonterminal share a common prefix, turn the different suffixes
into a new nonterminal.

Top-Down Derivation of “αβ”

βα

Lookahead Remaining

A

α

0. A ::= α Tail
1. Tail ::= β | γ

Tail

Top-Down Derivation of “αβ”

β

Lookahead Remaining

A

α

0. A ::= α Tail
1. Tail ::= β | γ

Tail

β

Top-Down Derivation of “αβ”

A

α

0. A ::= α Tail
1. Tail ::= β | γ

Tail

β

Successful parse!

0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

Changing original grammar a little (Grammar 1)

z xa

Lookahead Remaining

0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

What’s the issue?

There’s a FIRST Conflict!

0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”: LL(1) can’t parse

z xa

Lookahead Remaining

S

B

a

S

w

a

OR

0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

Parse Tree without changing Grammar

S

B

a z x

C

Applying the Fix: Factor out the Common Prefix

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

Top-Down Derivation of “a z x”

z xa

Lookahead Remaining

S

Tail

a

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

Tail

a

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

Tail

a

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

C

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

Tail

a

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

C

x

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

Tail

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

C

a z x

Top-Down Derivation of “a z x”

x

Lookahead Remaining

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

S

Tail

B

C

a z x

Top-Down Derivation of “a z x”
S

Tail

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

B

C

a z x

Success!

Comparing Parse Trees
S

Tail

a z x

C

B Purple trees
are the same!

S

B

a z x

C

For each nonterminal in the grammar:

– Its productions must have disjoint FIRST sets

– If it is nullable, the FIRST sets of its productions must be disjoint from
its FOLLOW set

**We can often transform a grammar to satisfy this if needed

A ::= x | B
B ::= x

A ::= x | B
B ::= y

S ::= A x
A ::= ε | x

S ::= A y
A ::= ε | x

LL Condition

0. A ::= B α
1. B ::= α | ε

Canonical FIRST FOLLOW Conflict

Problem

Because B is nullable, its FOLLOW set must
be disjoint from the FIRST sets of its right-

hand sides!

Let’s try a top-down derivation of “α”

α

Lookahead Remaining

A

α

B

A

αε

OR

0. A ::= B α
1. B ::= α | ε

α

B

Let’s try a top-down derivation of “α”

A

α

B

A

αε

WHICH
ONE?

0. A ::= B α
1. B ::= α | ε

α

B We don’t know! Again,
we can’t see more than

α!

Canonical FIRST FOLLOW Conflict Solution

Solution
0. A ::= B α
1. B ::= α | ε

0. A ::= α Tail
1. Tail ::= α | ε

0. A ::= αα | α

Substitute the
common prefix

Factor out the
tail

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

Watch out for Nullability! (Grammar 2)
Changing the grammar again…

x a

Lookahead Remaining

What’s the issue?

FIRST FOLLOW Conflict

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

Top down derivation of “ax”

x

Lookahead Remaining

S

B

a x

C

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

Top down derivation of “ax”

x

Lookahead Remaining

S

B

a ε x

OR
C

S

B

a x x

C

Applying the Fix: Substitute the Common Prefix,
then Factor

0. S ::= a B
1. B ::= x | xx | y
2. C ::= ε | x

0. S ::= a B
1. B ::= x Tail | y
2. Tail ::= x | ε

1

2

Top down derivation of “ax”

x

Lookahead Remaining

0. S ::= a B
1. B ::= x Tail | y
2. Tail ::= x | ε

S

B

a x ε

Tail

