CSE 401/M501 — Compilers

Parsing & Context-Free Grammars

Hal Perkins
Autumn 2021

UW CSE 401/M501 Autumn 2021

C-1

Administrivia (1)

e Reminders:

— Project partner signup. Please fill out the form with
your and your partner’s names and cse netids
* One form per group, please; +1 point each if it’s right
* Please finish by tomorrow, 11 pm

 Who's still looking for a partner? 401? M501°?

— Looks like some success using ed discussion thread. Something
else? Mingle at end of class? (remind me to stop on time ©)

— hw1 due Thur. night (regexps, etc.) via gradescope

e * ys *: just be clear about regexp operators vs characters.
Avoid messy \e\s\c\a\p\e\s — let’s use something simple like
* (underlined terminal) vs * (operator). Add a short
explanation (sentence or 2) to help grader with notation.

UW CSE 401/M501 Autumn 2021 C-2

Administrivia (2)

e Office hours started today

— In person + zoom

— Schedule posted on web calendar with links to zoom
on the canvas calendar for security

— |n-person:
* Please respect room capacity limits
* Leave doors open

e If full, please wait somewhere away from the room (i.e., no
crowding please, etc.)

 We’'ll try to service in-person and zoom first-come, first-
served. Let us know how best to do this — we’re making it
up as we go. ©

UW CSE 401/M501 Autumn 2021 C-3

Administrivia (added Wed.)

e HW1 due tomorrow night

e Scanner assignment, first part of the project,
posted now, due a week from Thursday

— Details, demos, tools, gitlab, etc. in sections tomorrow
* We’'ll also post some demo videos later today or tomorrow

— Will set up gitlab repos with starter code for as many
groups as possible this afternoon

* Anyone still looking for partners? Maybe hang out after
class and pair up with someone?

* Discussion board request: please use descriptive
titles so everyone can locate relevant things more
easily. Can we do better than “clarification”? ©

UW CSE 401/M501 Autumn 2021 C-4

Agenda for Today

Parsing overview

Context free grammars
Ambiguous grammars

Reading: Cooper & Torczon 3.1-3.2

— Dragon book is also particularly strong on
grammars and languages

UW CSE 401/M501 Autumn 2021

C-5

Syntactic Analysis / Parsing

* Goal: Convert token stream to an abstract
syntax tree

e Abstract syntax tree (AST):
— Captures the structural features of the program

— Primary data structure for next phases of
compilation

e Plan

— Study how context-free grammars specify syntax
— Study algorithms for parsing and building ASTs

UW CSE 401/M501 Autumn 2021

C-6

Concrete vs Abstract Syntax

* The full parse tree includes all of the derivation details. The
Abstract Syntax Tree (AST) omits information that is necessary
to parse the input, but not needed for later processing

 Example:
Concrete Syntax Abstract Syntax

exprﬂe % expr /Jr\
| |

/(Ij mlt id:a int:1

UW CSE 401/M501 Autumn 2021 C-7

Context-free Grammars

* The syntax of most programming languages can be
specified by a context-free grammar (CFG)

e Compromise between
— REs: can’t nest or specify recursive structure
— General grammars: more power than needed, undecidable

 Context-free grammars are a sweet SpOt

— Powerful enough to describe nesting, recursion

— Easy to parse; but also some restrictions for speed
* Not perfect

— Cannot capture semantics, like “must declare every
variable” or “must be int” — requires later semantic pass

— Can be ambiguous

UW CSE 401/M501 Autumn 2021 C-8

Derivations and Parse Trees

* Derivation: a sequence of expansion steps,
beginning with a start symbol and leading to a

sequence of terminals

* Parsing: inverse of derivation

— Given a sequence of terminals (aka tokens) want

to recover (discover) the nonterminals and
structure, i.e., the parse (concrete syntax) tree

UW CSE 401/M501 Autumn 2021 C-9

program .= Statement | program statement
statement ::= assignStmt | ifStmt

assignStmt .= id = expr;
O I d Exa m p | e G i1Sstmt ::= if (expr) statement
expr.:=Id| int| expr+ expr

id:=al|b|cli|ljlk|n]|x]|y]|z
int::=0[1]2|3|4|5|6]7]|8]9

program
Progm{\
e statement
statement |
/ IrStmt
statement
assignStmt |
caslgnStmt
id | expr] id %
,-,:# o | it
l
w—a=1 ; if (a + 1) b = 2 ;

UW CSE 401/M501 Autumn 2021 C-10

Parsing

* Parsing: Given a grammar G and a sentence w
in L(G), traverse the derivation (parse tree) for
w in some standard order and do something
useful at each node

— The tree might not be produced explicitly, but the
control flow of the parser will correspond to a

traversal

UW CSE 401/M501 Autumn 2021 C-11

“Standard Order”

* For practical reasons we want the parser to be
deterministic (no backtracking), and we want
to examine the source program from left to
right.

— (i.e., parse the program in linear time in the order
it appears in the source file)

UW CSE 401/M501 Autumn 2021 C-12

program

program
statement

Common Orderings =™

assignstmt

statement

assignstmt

id | expr
,-%n« |-
a=1 ; if (a + 1) b = 2 ;

* Top-down
— Start with the root

— Traverse the parse tree depth-first, left-to-right
(leftmost derivation)

— LL(k), recursive-descent

* Bottom-up

— Start at leaves and build up to the root
* Effectively a rightmost derivation in reverse(!)

— LR(k) and subsets (LALR(k), SLR(k), etc.)

id expr

|
int
|

UW CSE 401/M501 Autumn 2021 C-13

|II

“Something Usefu

e At each point (node) in the traversal, perform
some semantic action

— Construct nodes of full parse tree (rare)
— Construct abstract syntax tree (AST) (common)

— Construct linear, lower-level representation (often
produced by traversing initial AST in later phases of
production compilers)

— Generate target code on the fly (done in 1-pass
compiler; not common in production compilers)

* Can’t generate great code in one pass, but useful if you need
a quick ‘n dirty working compiler

UW CSE 401/M501 Autumn 2021 C-14

Context-Free Grammars

 Formally, a grammar G is a tuple <N,2,P,5>
where
— N is a finite set of non-terminal symbols
— 2 is a finite set of terminal symbols (alphabet)

— P is a finite set of productions
e Asubsetof Nx (N UZ2)*

— Sis the start symbol, a distinguished element of N

* If not specified otherwise, this is usually assumed to be
the non-terminal on the left of the first production

UW CSE 401/M501 Autumn 2021 C-15

Standard Notations

a, b, c elements of 2

W, X, Y,z elements of 2*

A B, C elements of N

X, Y, Z elements of NUZ

o, 3,y elements of (NUZ)*
A—oorA:=aif<A,o>inP

UW CSE 401/M501 Autumn 2021

C-16

Derivation Relations (1)

c o Ay=>a Py iff Ax=BinP
— derives

e A=>* o if there is a chain of productions
starting with A that generates o

— transitive closure

UW CSE 401/M501 Autumn 2021 C-17

Derivation Relations (2)

e wWAy=> _wfpy iffAu=3inP
— derives leftmost

c aAw=>_oafw iffA:=BinP
— derives rightmost

* We will only be interested in leftmost and
rightmost derivations — not random orderings

UW CSE 401/M501 Autumn 2021 C-18

Languages

e ForAin N, define L(A)={w | A=>* w }

* |If Sis the start symbol of grammar G, define
L(G) = L(S)

— Nonterminal on left of first rule is taken to be the
start symbol if one is not specified explicitly

UW CSE 401/M501 Autumn 2021 C-19

Reduced Grammars

e Grammar G is reduced iff for every
production A ::= . in G there is a derivation
S=>*xAz=>x0az=>%xyz
— i.e., no production is useless

* Convention: we will use only reduced
grammars

— There are algorithms for pruning useless
productions from grammars — see a formal
language or compiler book for details

UW CSE 401/M501 Autumn 2021 C-20

Ambiguity

e Grammar G is unambiguous iff every w in L(G)
has a unique leftmost (or rightmost) derivation

— Fact: unique leftmost or unique rightmost implies the
other

* A grammar without this property is ambiguous

— But other grammars that generate the same language
might be unambiguous

* We need unambiguous grammars for parsing

UW CSE 401/M501 Autumn 2021 C-21

Example: Ambiguous Grammar for
Arithmetic Expressions

expr ::= expr + expr | expr - expr
| expr * expr | expr [expr | int
int::=0]1112|3]|4|5|6|7]|8]|°9
* Exercise: show that this is ambiguous

— How? Show two different leftmost or rightmost
derivations for the same string

— Equivalently: show two different parse trees for
the same string

UW CSE 401/M501 Autumn 2021 C-22

expr ;= expr + expr | expr - expr
| expr * expr | expr [expr | int

Example (C(_)nt) int:=0]1]2|3]|4|5|6|7]8]9

e Give a leftmost derivation of 2+3*4 and show
the parse tree

expr

UW CSE 401/M501 Autumn 2021 C-23

expr ;= expr + expr | expr - expr
| expr * expr | expr [expr | int

Example (C(_)nt) int:=0]1]2|3]|4|5|6|7]8]9

 Give a different leftmost derivation of
2+3*4 and show the parse tree

expr

(2+3) * 4 /\ expr 2+(3%4)
/\
expr expr expr expr
T T
EXpr eXpr expr expr
l ‘ int int
int int int int
2 + 3 * 4) + 3 * 4

UW CSE 401/M501 Autumn 2021 C-24

expr ;= expr + expr | expr - expr
| expr * expr | expr [expr | int

Another example mt=oi11213141516171815

 Give two different derivations of 5+6+7

5+ (6+7) (5+6) + 7
expr expr
expr Expr expr expr
expr expr expr expr
int l ‘ int
Int Int int int
5 + 6+ 7 5 + 6 @+ 7

UW CSE 401/M501 Autumn 2021 C-25

What’s going on here?

* The grammar has no notion of precedence or
associativity

* Traditional solution
— Create a non-terminal for each level of precedence
— |solate the corresponding part of the grammar

— Force the parser to recognize higher precedence
subexpressions first

— Use left- or right-recursion for left- or right-associative
operators (non-associative operators are not
recursive)

UW CSE 401/M501 Autumn 2021 C-26

Classic Expression Grammar
(first used in ALGOL 60)

expr ;= expr + term | expr—term | term
term ::= term * factor | term / factor | factor
factor ::=int | (expr)
int::=0]1|2|3|4|5]|6]|7

UW CSE 401/M501 Autumn 2021 C-27

expr ::= expr + term | expr—term | term

. term ::= term * factor | term / factor | factor
CheCk- factor ::=int | (‘expr)
int::=0|1]|2|3|4|5|6]|7
. * int::=0
Derive2+3 *4
expr :
P Separation of non-
/\ terminals enforces
expr term precedence
term
term factor
factor l
factor
int | int
int
|
2 + 3 * 4

UW CSE 401/M501 Autumn 2021 C-28

expr ::= expr + term | expr—term | term

. term ::= term * factor | term / factor | factor
CheCk. factor ::=int | (expr)
. int::=0|1|2|3|4]|5|6]|7
Derive5+6 + 7/
expr) :
P Note Iinteraction
expr term right-recursive |
/\ rules and resulting
associativit
expr term y
term factor
factor
factor
. int
Int
int
5 + 6 + 7

UW CSE 401/M501 Autumn 2021 C-29

expr ::= expr + term | expr—term | term

C h k . term ::= term * factor | term / factor | factor
eC . factor ::=int | (expr)

. int::=0|1|2|3|4]|5|6]|7
Derive 5 + (6 + 7)

(left as an exercise ©)

UW CSE 401/M501 Autumn 2021 C-30

Another Classic Example
e Grammar for conditional statements
stmt ::=if (cond) stmt

| if (cond) stmt else stmt

— Exercise: show that this is ambiguous

e How?

UW CSE 401/M501 Autumn 2021

C-31

stmt .= if (cond) stmt
| if (cond) stmt else stmt

One Derivation

stmt

if (cond)
if (cond)
stmt

else
stmt

stmt

if (cond) if (cond) stmt else stmt

UW CSE 401/M501 Autumn 2021 C-32

stmt .= if (cond) stmt
| if (cond) stmt else stmt

Another Derivation

stmt

if (cond)
if (cond)
stmt
else
stmt

stmt

if (cond) if (cond) stmt else stmt

UW CSE 401/M501 Autumn 2021 C-33

Solving “if” Ambiguity

* Fix the grammar to separate if statements
with else clause and if statements with no else

— Done in Java reference grammar
— Adds lots of non-terminals
* or, Change the language

— But it’d better be ok with the language’s
community to do this

* or, Use some ad-hoc rule in the parser
— “else matches closest unpaired if”

UW CSE 401/M501 Autumn 2021 C-34

Resolving Ambiguity with Grammar (1)

Stmt ::= MatchedStmt | UnmatchedStmt
MatchedStmt ::=... |

if (Expr) MatchedStmt else MatchedStmt
UnmatchedStmt ::= ... |

if (Expr) Stmt |

if (Expr) MatchedStmt else UnmatchedStmt

— formal, no additional rules beyond syntax
— can be more obscure than original grammar

UW CSE 401/M501 Autumn 2021 C-35

Stmt ::= MatchedStmt | UnmatchedStmt

MatchedStmt ::=... |
C e C if (Expr) MatchedStmt else MatchedStmt

UnmatchedStmt ::= if (Expr) Stmt |
if (Expr) MatchedStmt else UnmatchedStmt

(exercise ©)

if (cond) if (cond) stmt else stmt

UW CSE 401/M501 Autumn 2021 C-36

Resolving Ambiguity with Grammar (2)

* |f you can (re-)design the language, just avoid the
problem entirely

Stmt ::= ... |
if Expr then Stmt end |
if Expr then Stmt else Stmt end

— formal, clear, elegant

— allows sequence of Stmts in then and else branches, no {, }
needed

— extra end required for every if
(But maybe this is a good idea anyway?)

UW CSE 401/M501 Autumn 2021 C-37

Parser Tools and Operators

* Most parser tools can cope with ambiguous
grammars

— Makes life simpler if used with discipline

* Usually can specify precedence & associativity

— Allows simpler, ambiguous grammar with fewer
nonterminals as basis for parser — let the tool handle
the details (but only when it makes sense)

* (i.e., expr ::= expr+expr | expr*expr | ... with assoc. &
precedence declarations is often the best solution)

* Take advantage of this to simplify the grammar
when using parser-generator tools

— We will do this in our compiler project

UW CSE 401/M501 Autumn 2021 C-38

Parser Tools and Ambiguous
Grammars

* Possible rules for resolving other problems

— Earlier productions in the grammar preferred to
later ones (danger here if parser input changes)

— Longest match used if there is a choice (good
solution for dangling if and similar things)
* Parser tools normally allow for this

— But be sure that what the tool does is really what

you want

* And that it’s part of the permanent tool spec, so that v2
won’t do something different (that you don’t want!)

UW CSE 401/M501 Autumn 2021 C-39

Coming Attractions

* Next topic: LR parsing

— Continue reading ch. 3

UW CSE 401/M501 Autumn 2021 C-40

