
CSE 401/M501 – Compilers

Overview and Administrivia
Hal Perkins

Autumn 2021

UW CSE 401/M501 Autumn 2021 A-1

Welcome back to the Almost Normal™ J
Please remember in class to wear masks
at all times and no eating/drinking.
Your colleagues (including course staff!)
thank you for your help.

Agenda

• Introductions
• Administrivia
• What’s a compiler?
• Why you want to take this course J

UW CSE 401/M501 Autumn 2021 A-2

But first…

WE’RE BACK!!!

UW CSE 401/M501 Autumn 2021 A-3

In Person This Quarter
• It’s in-person this quarter, not remote or hybrid

– But we will take advantage of things that we learned worked
well over the last year, including zoom as well as in-person
during office hours
• Please suggest other things that we might do better/differently

– Lectures (but not sections) will be recorded on panopto for
review/study, but that is not a substitute for going to class
• Be here, take notes, enjoy!

– We also will restore some content that was scaled back while
online

• Most important: stay healthy, wear masks, keep your
(physical) distance from others when you can – let’s make
this work!

• Have you had your flu shot yet?
UW CSE 401/M501 Autumn 2021 A-4

UW & Allen School Guidelines

• Wear masks indoors (including in class)
• No eating/drinking in class or meetings (quick

sip of water now and then is fine)
• Avoid crowding in office hours or other

meetings, no crowded waiting lines, etc.
• And be prepared to adjust and adapt as

circumstances change

UW CSE 401/M501 Autumn 2021 A-5

Stay in Touch – Speak Up!
• This is a strange world we’re (still) in and there’s (still) a lot

of stress for many people (although maybe different now)

• Please speak up if things aren’t (or are!) going well
– We can often help if we know about things, so stay in touch

with TAs, instructor, advising, friends and peers, family

• We’re all in this together but not all in the same way, so
please show understanding and compassion for each other
and help when you can – both in and outside of class

UW CSE 401/M501 Autumn 2021 A-6

Who: Course staff
• Instructor: Hal Perkins: UW faculty for a while; CSE 401

veteran (+ other compiler courses)

• TAs: Seonjun Mun, Mike Nao, Wilson Tang, Dao Yi,
Apollo Zhu
– Plus help from CSE P 501 TA Hannah Potter

• Get to know us – we’re here to help you succeed!

• Office hours will start as soon as we’re organized – posted
on calendars and announced on ed when ready. During
office hours, we’ll have an open zoom session, and you can
join in person or virtually. Zoom links on canvas calendar.
– We’re improvising here – help us figure out how to make it work

or what to do differently!

UW CSE 401/M501 Autumn 2021 A-7

Credits

• Some direct ancestors of this course:
– UW CSE 401 (Chambers, Snyder, Notkin, Perkins,

Ringenburg, Henry, …)
– UW CSE PMP 582/501 (Perkins)
– Rice CS 412 (Cooper, Kennedy, Torczon)
– Cornell CS 412-3 (Teitelbaum, Perkins)
– Many books (Appel; Cooper/Torczon; Aho, [[Lam,]

Sethi,] Ullman [Dragon Book]; Fischer, [Cytron ,]
LeBlanc; Muchnick, …)

• Won’t attempt to attribute everything – and
some (many?) of the details are lost in the haze
of time

UW CSE 401/M501 Autumn 2021 A-8

CSE M 501

• Enhanced version for 5th-year BS/MS students.

• M501 students will have to do a significant
addition to the project, or some other extra work
if agreed with instructor (papers, reports, ???)
– More details later

• Otherwise 401 and M501 are the same (lectures,
sections, assignments, infrastructure, …)

UW CSE 401/M501 Autumn 2021 A-9

So whadda ya know?

• Official prerequisites:
– CSE 332 (data abstractions)
• and therefore CSE 311 (Foundations)

– CSE 351 (hardware/software interface, x86_64)

• Also very useful, but not required:
– CSE 331 (software design & implementation)
– CSE 341 (programming languages)
– Who’s taken these?

UW CSE 401/M501 Autumn 2021 A-10

Lectures & Sections

• Both required

• All material posted, but they are visual aids
– Be here! Take notes!

• Sections: additional examples and exercises plus
project details and tools
– We will have sections this week (tomorrow!). We’ll

charge right in with regular expressions and scanners
after getting organized
• Watch time roster for possible room changes!

UW CSE 401/M501 Autumn 2021 A-11

Gadgets in class
• Gadgets reduce focus and learning
– Bursts of info (e.g. notifications, IMs, etc.) are addictive
– Heavy multitaskers have more trouble focusing and

shutting out irrelevant information
• http://www.npr.org/2016/04/17/474525392/attention-students-

put-your-laptops-away
• So how should we deal with laptops/phones/etc.?
– Just say no!
– No open gadgets during class (really!)

• Unless you are actually using a tablet to take notes or something….
– Urge to search? – ask a question! Everyone benefits!!
– You may close/turn off non-notetaking electronics now
– Pull out a piece of paper and pen/pencil instead J

UW CSE 401/M501 Autumn 2021 A-12

http://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away

Communications

• Course web site (www.cs.uw.edu/401)
• Discussion board – ed
– For anything related to the course
– Join in! Help each other out. Staff will contribute.
– Also use for private messages with too-specific-to-

post questions, code, etc.
– Staff will also use to post announcements

• Email to cse401-staff[at]cs for things that
need a followup, not appropriate for ed, …

UW CSE 401/M501 Autumn 2021 A-13

Requirements & Grading

• We will plan to have a (somewhat) normal
midterm and final exam, but weighed less than in
the “before times”
– It’s an important review/reflection part we missed

while online
• Roughly:
– 50% project, done with a partner
– 25% individual written homework
– 10% midterm
– 15% final
We reserve the right to adjust as needed/appropriate

UW CSE 401/M501 Autumn 2021 A-14

Academic Integrity

• We want a collegial group helping each other succeed!
• But: you must never misrepresent work done by

someone else as your own, without proper credit if
appropriate, or assist others to do the same

• Read the course policy carefully
• We trust you to behave ethically
– I have little sympathy for violations of that trust
– Honest work is the most important feature of a university

(or engineering or business or life). Anything less
disrespects your instructor, your colleagues, and yourself

UW CSE 401/M501 Autumn 2021 A-15

Course Project

• Best way to learn about compilers is to build one!
• Course project
– MiniJava compiler: classes, objects, etc.

• Core parts of Java – essentials only
• Originally from Appel textbook (but you don’t need that)

– Generate executable x86-64 code & run it
– Completed in steps through the quarter

• Where you wind up at the end is by far the most important
part, but there are intermediate milestones to keep you on
schedule and provide feedback at important points

– Additional work for CSE M 501 students – details later

UW CSE 401/M501 Autumn 2021 A-16

Project Groups
• You should work in pairs

– Pick a partner now to work with throughout quarter – we need
this info by early next week

– If you are in CSE M 501 you should pair up with someone else in
that group (401 ➝ M 501 switches are possible if it makes sense
for individual(s) involved)

– Partnering over networks works surprisingly well even if you
don’t intend to hang out together in the labs regularly

• We’ll provide accounts on department gitlab server for
groups to store and synchronize their work & we’ll get files
from there for project feedback / grading
– Anybody new to CSE Gitlab/Git?

UW CSE 401/M501 Autumn 2021 A-17

Books

• Four good books; will try to get these on
reserve in the library if we can…
– Cooper & Torczon, Engineering a Compiler.

“Official text” & we’ll take some assignments
from here. Available free online through UW
Library Safari books subscription. See syllabus.

– Appel, Modern Compiler Implementation in
Java, 2nd ed. MiniJava is from here.

– Aho, Lam, Sethi, Ullman, “Dragon Book”
– Fischer, Cytron, LeBlanc, Crafting a Compiler

UW CSE 401/M501 Autumn 2021 A-18

And the point is…

• How do we execute something like this?
int nPos = 0;
int k = 0;
while (k < length) {

if (a[k] > 0) {
nPos++;

}
}

• Or, more concretely, how do we program a computer to
understand and carry out a computation written as text in a
file? The computer only knows 1’s & 0’s: encodings of
instructions and data

UW CSE 401/M501 Autumn 2021 A-19

Structure of a Compiler

• At a high level, a compiler has two pieces:
– Front end: analysis
• Read source program and discover its structure and

meaning

– Back end: synthesis
• Generate equivalent target language program

UW CSE 401/M501 Autumn 2021 A-20

Source TargetFront End Back End

Compiler must…

• Recognize legal programs (& complain about illegal
ones)

• Generate correct code
– Compiler can attempt to improve (“optimize”) code, but

must not change behavior (meaning)

• Manage runtime storage of all variables/data
• Agree with OS & linker on target format

UW CSE 401/M501 Autumn 2021 A-21

Source TargetFront End Back End

Implications

• Phases communicate using some sort of
Intermediate Representation(s) (IR)
– Front end maps source into IR
– Back end maps IR to target machine code
– Often multiple IRs – higher level at first, lower level in later

phases

UW CSE 401/M501 Autumn 2021 A-22

Source TargetFront End Back End

Front End

• Usually split into two parts
– Scanner: Responsible for converting character stream to

token stream: keywords, operators, variables, constants, …
• Also: strips out white space, comments

– Parser: Reads token stream; generates IR
• Either here or shortly after, perform semantics analysis to check

for things like type errors, etc.

• Both of these can be generated automatically
– Use a formal grammar to specify the source language
– Tools read the grammar and generate scanner & parser

(lex/yacc or flex/bison for C/C++, JFlex/CUP for Java)

UW CSE 401/M501 Autumn 2021 A-23

Scanner Parsersource tokens IR

Scanner Example

• Input text
// this statement does very little
if (x >= y) y = 42;

• Token Stream

– Notes: tokens are atomic items, not character strings;
comments & whitespace are not tokens (in most languages –
counterexamples: Python indenting, Ruby and JavaScript newlines)
• Token objects sometimes carry associated data (e.g., numeric

value, variable name)

UW CSE 401/M501 Autumn 2021 A-24

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

Parser Output (IR)

• Given token stream from scanner, the parser
must produce output that captures the meaning
of the program

• Most common parser output is an abstract syntax
tree (AST)
– Essential meaning of program without syntactic noise
– Nodes are operations, children are operands

• Many different forms
– Engineering tradeoffs change over time
– Tradeoffs (and IRs) can also vary between different

phases of a single compiler

UW CSE 401/M501 Autumn 2021 A-25

Scanner/Parser Example

• Token Stream • Abstract Syntax Tree

UW CSE 401/M501 Autumn 2021 A-26

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Original source program:
// this statement does very little
if (x >= y) y = 42;

Static Semantic Analysis

• During or (usually) after parsing, check that the
program is legal and collect info for the back end
– Type checking
– Verify language requirements like proper declarations,

etc.
– Preliminary resource allocation
– Collect other information needed by back end analysis

and code generation
• Key data structure: Symbol Table(s)
– Maps names -> meaning/types/details

UW CSE 401/M501 Autumn 2021 A-27

Back End

• Responsibilities
– Translate IR into target code
– Should produce “good” code
• “good” = fast, compact, low power (pick some)

– Should use machine resources effectively
• Registers
• Instructions
• Memory hierarchy

UW CSE 401/M501 Autumn 2021 A-28

Back End Structure

• Typically two major parts
– “Optimization” – code improvement – change correct

code into semantically equivalent “better” code
• Examples: common subexpression elimination, constant

folding, code motion (move invariant computations outside of
loops), function inlining (replace call with body of function)

• Optimization phases often interleaved with analysis
– Target Code Generation (machine specific)

• Instruction selection & scheduling, register allocation
• Usually walk the AST and generate lower-level intermediate

code before optimization

UW CSE 401/M501 Autumn 2021 A-29

The Result

• Input
if (x >= y)

y = 42;

• Output

movl 16(%rbp),%edx
movl -8(%rbp),%eax
cmpl %eax, %edx
jl L17
movl $42, -8(%rbp)

L17:

UW CSE 401/M501 Autumn 2021 A-30

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Why Study Compilers? (1)

• Become a better programmer(!)
– Insight into interaction between languages, compilers,

and hardware
– Understanding of implementation techniques, how

code maps to hardware
– Better intuition about what your code does
– Understanding how compilers optimize code helps

you write code that is easier to optimize
• And avoid wasting time doing “optimizations” that the

compiler will do better, and avoid “clever” code that
confuses the compiler and makes thing worse

UW CSE 401/M501 Autumn 2021 A-38

Why Study Compilers? (2)

• Compiler techniques are everywhere
– Parsing (“little” languages, program input, scripts,…)
– Software tools (verifiers, checkers, …)
– Database engines, query languages
– Domain-specific languages, ML, data science
– Text processing

• Tex/LaTex -> dvi -> Postscript -> pdf

– Hardware: VHDL; model-checking tools
– Mathematics (Mathematica, Matlab, SAGE)

UW CSE 401/M501 Autumn 2021 A-39

Why Study Compilers? (3)

• Fascinating blend of theory and engineering
– Lots of beautiful theory around compilers

• Parsing, scanning, static analysis
– Interesting engineering challenges and tradeoffs,

particularly in optimization (code improvement)
• Ordering of optimization phases
• What works for some programs can be bad for others

– Plus some very difficult problems (NP-hard or worse)
• E.g., register allocation is equivalent to graph coloring
• Need to come up with “good enough” approximations /

heuristics

UW CSE 401/M501 Autumn 2021 A-40

Why Study Compilers? (4)

• Draws ideas from many parts of CSE
– AI: Greedy algorithms, heuristic search
– Algorithms: graphs, dynamic programming, approximation
– Theory: Grammars, DFAs and PDAs, pattern matching,

fixed-point algorithms
– Systems: Allocation & naming, synchronization, locality
– Architecture: pipelines, instruction set use, memory

hierarchy management, locality

UW CSE 401/M501 Autumn 2021 A-41

Why Study Compilers? (5)

• You might even write a compiler some day!

• You will write parsers and interpreters for little
languages, if not bigger things
– Command languages, configuration files, XML,

JSON, network protocols, …

• And if you like working with compilers and are
good at it there are many jobs available…

UW CSE 401/M501 Autumn 2021 A-42

Any questions?

• Your job is to ask questions to be sure you
understand what’s happening and to slow me
down
– Otherwise, I’ll barrel on ahead J

UW CSE 401/M501 Autumn 2021 A-48

Coming Attractions

• Quick review of formal grammars
• Lexical analysis – scanning & regular

expressions
– Background for first part of the project

• Followed by parsing …
• Starting in sections tomorrow – don’t miss!
• Start reading: ch. 1, 2.1-2.4
– Entire book available through Safari Online to UW

community – see syllabus for link

UW CSE 401/M501 Autumn 2021 A-49

Before next time…

• Familiarize yourself with the course web site

• Read syllabus and academic integrity policy

• Find a partner!
– And meet other people in the class too!! J
– And share ideas about how to adjust and form a

community in these new times JJ

UW CSE 401/M501 Autumn 2021 A-50

