

CSE 401 - Semantics, Type Checking, & Vtables – Week 7 - Solution

1. Suppose we have the following global scope:

Now, consider the following hypothetical method definition for Bar.method:
public int method(int i, int j) {
 int r;
 boolean b;
 Foo o;
 if (this.field) {
 o = this;
 b = o.whoop(i + j);
 r = o.val;
 } else {
 r = i * j + 3;
 }
 return r;
}

a. What variables (locals, parameters, etc.) are defined in the local scope in the method body?

Bar this; int i; int j; int r; boolean b; Foo o;

Remember that every MiniJava method has an implicit parameter “this” for the receiver
object. For the sake of type-checking the method body, it makes sense to treat it like a normal
parameter, although you may treat it however you’d like in your symbol tables.

b. When we execute this method body, a runtime error could result. Explain how something could

go wrong by giving values of the parameters and/or variables involved that would cause a
runtime error.

this = Bar(field: true);

The error here is the potential failure of the downcast in the assignment “o = this.” Unlike
real Java, MiniJava’s dynamic semantics defines no behavior for a failing downcast, so the
static semantics forbids downcasts altogether.

class Bar { boolean field; public int method(int i, int j); }
class Foo extends Bar { int val; public boolean whoop(int x); }

c. The method body also has type errors. Can you describe which type check(s) the compiler
could use to deduce this fact?

Since MiniJava’s static semantics forbids downcasts, a MiniJava compiler must check that the
type of an assignment statement’s right-hand side is either the same as the left-hand side’s
type or a subclass type of the left-hand side’s class type.

d. Does every possible execution of this method produce a runtime error? Can you describe any

that happen to be statically correct? (Again, possible runtime values for parameters/variables
would suffice.)

No, some possible executions of the method avoid the branch that causes an issue, for example
given the following value of this:

this = Bar(field: false);

Alternatively, some possible executions could enable the “downcast” to succeed, if the receiver
object (this) ends up really being an instance of the subclass Foo, like so:

this = Foo(field: true, val: <any integer>);

e. Suppose that we replaced the use of this.field in the method body to call a boolean

method that always returns false. How would this change your answers to the previous
questions?

Even though the ill-behaving branch would never get run, type checking composes through
types and type signatures (not the specific values!), so a type checker for MiniJava will not
verify the method body (i.e., will report a type error), despite the forbidden behavior being
impossible according to the dynamic semantics.

2. Consider the following Java program:
class A {
 int n;
 public void f1() { System.out.println(“A.f1”); this.f2(); }
 public void f2() { System.out.println(“A.f2”); }
}
class B extends A {
 int x;
 public void f3() { System.out.println(“B.f3”); this.f1(); }
 public void f2() { System.out.println(“B.f2”); x = 11; n = 22; }
}
class C extends B {
 int x;
 public void f1() { System.out.println(“C.f1”); this.f2(); x = 33; }
}
class Main {
 public static void main(String[] args) {
 A aa = new A();
 A ab = new B();
 B bc = new C();
 }
}

a. Complete the diagram below to show the layout of objects and vtables by the end of the main
function:

aa

ab

bc

variables objects vtables function code

A.f1 vtbl

 n
A.f2

vtbl

n

 x

vtbl

n

 x

 x

f1
f2

f1
f2
f3

f1
f2
f3

B.f2

B.f3

C.f1

A

B

C

b. If we added each of the lines below to the end of main, what would the output of the program
be? If the line would cause an error, describe why.

aa.f1(); A.f1

A.f2

ab.f1(); A.f1
B.f2
(Note that even when evaluating an inherited method,
“this” refers to the current object)

ab.f3(); Compiler error – f3 is not defined for class A (even
though the underlying object is of type C, the
compiler only knows variable types at compile time)

bc.f3(); B.f3
C.f1
B.f2

c. Suppose we call bc.f1(). Draw the bc object after the call, including both its layout in

memory and the value stored at each location.

Note that when B.f2 is compiled in B’s scope, the variable name “x” refers to B’s field x, so the
reference to it gets compiled to store a value at the offset of the x field. Later, this method is
inherited by C, but that doesn’t change it’s meaning. Since it was compiled to use the offset of
B’s field x, it will still use that offset even when executing as an inherited method of C (which
happens to also have a field named x). This behavior is why it’s important for subclass objects
to have space for all the fields of their superclass: if they inherit any methods that reference
fields, those methods should still work with the offsets they were compiled with.

22

11

33

vtbl

n

x

x

(C’s vtable)

