
Semantics &
Type Checking

CSE 401 Section 7
Miya Natsuhara, Aaron Johnston,

Kory Watson, & Sam Wolfson



Announcements

- Midterm grades have been released
- If you have any questions, feel free to drop by office hours

- If it really looks like we goofed, submit a regrade request

- Semantics Project Part due November 14th (1 week away!)
- If you haven’t already, start early! There are plenty of weird edge cases to 

think about



Agenda

- Semantics & Type Checking
- Review: Semantics vs. Type Checking
- Type Checking for MiniJava

- Objects & vtables
- MiniJava object and vtable layouts
- Review: Java inheritance



semantics: precise meaning of program syntax

dynamic semantics: systematic rules to define runtime behavior

static semantics: systematic rules to define statically correct behavior

Semantics, Dynamic and Static

what type checking implements

what interpretation or code generation implements



Static Semantics of MiniJava

1. never add, subtract, multiply, or print non-integers

2. never call a non-existent method

3. never access a non-existent field

n. … and so on (see the assignment page for more)

Every language has its own idea of “statically correct,”
but in MiniJava, statically correct code must...

How do type checks relate to these conditions?



Type Checking for MiniJava

The type checker’s goal is to verify that a source program is statically correct.

We can’t check that directly, but we can build a checkable type system so that:
well-typed ⟹ statically correct

Note: type checking depends on context – an implementation will depend on keeping 
track of types across different contexts (a scoped symbol table)



Type Checking for MiniJava

statically correct

well-typed

MiniJava syntax



Examples

Suppose the following declarations are in effect:
Global scope: class Foo { int f; int m(boolean b); }
Local scope: Foo this (implicit); int x; boolean y;

56

In these scopes, which MiniJava expressions have type int? Why (not)?

2+x

this.f

x+this.m()

x+z.m(y)

x+this.m(true)

x+(new Foo()).f

x+y

(new Bar()).f



Scopes and Symbol Tables

Accurately tracking scope information, via symbol tables, is critical to type checking.

Some guiding observations from today:
- All classes in MiniJava will need symbol tables

- When looking for a symbol, start in method table, then enclosing class, then global

- To generate symbol tables, it will make your life easier to go layer-by-layer
- Global information needed everywhere! Makes sense to do that first
- Easier to check a method body once global information is already computed

- Implementation tip:
- Add pointers in your AST nodes to relevant type/symbol table information



The Take-Away

Static semantics is usually about what code must not do.

∴ ruling out ill-behaved traces is a useful mental model
∴ implementing and debugging a type checker is all about edge cases
∴ need to consider all names in scope, with their type (signatures)



Problem 1: Static Semantics & Type Checking



Agenda

- Semantics & Type Checking
- Review: Semantics vs. Type Checking
- Type Checking for MiniJava

- Objects & vtables
- MiniJava object and vtable layouts
- Review: Java inheritance



Objects & Vtables

Objects

- An instance of a class
- Contains reference to class vtable
- Also contains reference to its state

(fields)
- Order is important!

obj
vtbl

field1

f1

f2

f1 code

f2 code

field2

Vtables

- One per class
- Contains reference to code body for 

each method in the class
- Order is important!
- May be inherited from superclass



Vtables (and object fields!): Why does order matter?

X obj = new X();
obj.yeehaw();

giddyUp

X.giddyUp

X.yeehaw

X

yeehaw

+0

+8

Compile method call to an 
offset in the vtable based 
on the variable type!

X obj = new Y();
obj.yeehaw();

giddyUp

X.giddyUp

Y.yeehaw
yeehaw

+0

+8

lasso
+16

+24draw

Need to correspond to 
same offset in the 
subclass vtable!

What if the obj variable refers to instance of a subclass at runtime? Y

Y.lasso

Y.draw



Problem 2: Vtables & Objects


