
Interpreters &
More LL Grammars

CSE 401 Section 5
Kory Watson Aaron Johnston
Miya Natsuhara Sam Wolfson

Announcements

- Parser & AST due tonight!

- Homework 3 (LL grammars) due Monday
- Only one late day max so we can distribute solutions in time for…

- Midterm next Friday (1 week away)!

Interpreters vs. Compilers

- Compilers
- Translate between different

languages

- e.g. MiniJava ⇒ x86 ASM

- e.g. Java ⇒ Java Byte Code

Source
Code Compiler Target

Code

JAVA x86 ASM

Interpreters vs. Compilers

- Compilers
- Translate between different

languages

- e.g. MiniJava ⇒ x86 ASM

- e.g. Java ⇒ Java Byte Code

- Interpreters
- Take action upon a piece of

code as it is read

Source
Code

Interpreter

Behavior!

PYTHON

Interpreters vs. Compilers

- Compilers
- Translate between different

languages

- e.g. MiniJava⇒ x86 ASM

- e.g. Java ⇒ Java Byte Code

- Interpreters
- Take action upon a piece of

code as it is read

Source
Code Compiler Target

Code

Behavior!

InterpreterInterpreter

Behavior!

JAVA x86 ASM

Implementation

- Frontend is the same!

- Interpreters

- Execute the AST

- Compilers
- Translate the AST

Source
Code

Frontend

AST Code GenInterpret. Visitor

Behavior!

JAVA

Compiler

Target
Code

x86 ASM

Interpreter

Interpreter Demo

LL Grammars

Now that you’ve taken a look at LL grammars, let’s review again…

L L (1)

Left-to-Right
Only takes one pass,

performed from the left

Leftmost
At each point, finds the

derivation for the leftmost
handle (top-down)

1 Terminal Lookahead
Must determine derivation

from the next unparsed
terminal in the string

Agenda

- What LL (Top-Down) Parsing Looks Like

- LL Grammar Issues

- FIRST Conflict

- FIRST FOLLOW Conflict

- Recursion

- Indirect Left Recursion

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

z xa

Lookahead Remaining

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

z xa

Lookahead Remaining

S

B

a

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

B

a x

C

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

xz

Lookahead Remaining

S

B

a z x

C

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

x

Lookahead Remaining

S

B

a z x

C

Agenda

- What LL (Top-Down) Parsing Looks Like

- LL Grammar Issues

- FIRST Conflict

- FIRST FOLLOW Conflict

- Recursion

- Indirect Left Recursion

0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

Let’s change the grammar a little bit. (Grammar 1)

z xa

Lookahead Remaining

0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

Top-Down Derivation of “a z x”

z xa

Lookahead Remaining

S

B

a

S

w

a

OR

Top-Down Derivation of “a z x”

S

a

S

w

a

WHICH?

We don’t know!

We are using an LL(1)
parser, we can’t see

more than a!

B

0. S ::= a B | a w
1. B ::= C x | y
2. C ::= ε | z

What’s the issue?

The FIRST sets of the right-hand sides for
the SAME NON-TERMINAL must be disjoint!

Fix: Factor out the Common Prefix

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

Top-Down Derivation of “a z x”

z xa

Lookahead Remaining

S

Tail

a

0. S ::= a Tail
1. Tail ::= B | w
2. B ::= C x | y
3. C ::= ε | z

Top-Down Derivation of “a z x”

S

Tail

a z x

C

B Purple trees
are the same!

S

B

a z x

C

Agenda

- What LL (Top-Down) Parsing Looks Like

- LL Grammar Issues

- FIRST Conflict

- FIRST FOLLOW Conflict

- Left Recursion

- Indirect Left Recursion

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

Watch out for empty rhs (ε-productions) too! (Grammar 2)

Changing the grammar again…

x a

Lookahead Remaining

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

Watch out for empty rhs (ε-productions) too! (Grammar 2)

x

Lookahead Remaining

S

B

a x

C

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

Watch out for empty rhs (ε-productions) too!

x

Lookahead Remaining

S

B

a ε x

OR
C

S

B

a x x

C

Top-Down Derivation of “a x”

We don’t know!

We are using an LL(1) parser, we
can’t look at more than the only x!

Therefore, we can’t know that
there is no input after the x.

S

B

a ε x

WHICH?
C

S

B

a x x

C

What’s the issue?

Because C is nullable, its FOLLOW set must
also be disjoint from the FIRST sets of its

right-hand sides!

0. S ::= a B
1. B ::= C x | y
2. C ::= ε | x

Fix (Various): Substitute the Common Prefix, then Factor

0. S ::= a B
2. B ::= x | xx | y
3. C ::= ε | x

0. S ::= a B
2. B ::= x Tail | y
3. Tail ::= x | ε

1

2

Agenda

- What LL (Top-Down) Parsing Looks Like

- LL Grammar Issues

- FIRST Conflict

- FIRST FOLLOW Conflict

- Left Recursion

- Indirect Left Recursion

0. S ::= S B | a | w
1. B ::= C x | y
2. C ::= ε | z

Let’s change the grammar again! (Grammar 3)

z xa

Lookahead Remaining

Top-Down Derivation of “a z x”

z xa

Lookahead Remaining

0. S ::= S B | a | w
1. B ::= C x | y
2. C ::= ε | z

S

S B

a

S

S B

a

OR S B

recursion

Top-Down Derivation of “a z x”

We don’t know!

We are using an LL(1)
parser, we can’t see

more than a!

S

S B

a

S

S B

a

WHICH? S B

recursion

What’s the issue?

Left recursion can’t be parsed by LL(1) parsers!

0. S ::= S B | a | w
1. B ::= C x | y
2. C ::= ε | z

To fix the issue: Make a tail rule again!

0. S ::= a Tail | w Tail
1. Tail ::= B Tail | ε
2. B ::= C x | y
3. C ::= ε | z

1. Turn suffix of all S’s recursive rhs into a tail non-terminal.

2. Append the tail non-terminal to all of its rhs options.

3. Add the empty string (ε) as a rhs for the tail production.

4. Append the tail to every non-recursive rhs.

Top-Down Derivation of “a z x”

z xa

Lookahead Remaining

S

a Tail

a

0. S ::= a Tail | w Tail
1. Tail ::= B Tail | ε
2. B ::= C x | y
3. C ::= ε | z

Top-Down Derivation of “a z x”

S

a Tail

a z x ε

C

B Tail

S

a B

a z x

C
Purple trees are
the same again!

Agenda

- What LL (Top-Down) Parsing Looks Like

- LL Grammar Issues

- FIRST Conflict

- FIRST FOLLOW Conflict

- Left Recursion

- Indirect Left Recursion

Watch out for indirect left recursion, too!

0. S ::= B w | a B
1. B ::= S | z x | y
2. C ::= C x | y

Changing the grammar again…

z xa

Lookahead Remaining

Watch out for indirect left recursion, too!

z xa

Lookahead Remaining

S

a B

a

S

B w

a

OR

0. S ::= B w | a B
1. B ::= S | z x

S

recursion

B

To fix the issue: Substitute, then eliminate left recursion!
0. S ::= S w | z x w | a S | a z x
1. B ::= S | z x

Note: NEVER remove the starting non-terminal!
The start symbol of the new grammar should be the same

1

0. S ::= z x w Tail | a S Tail | a z x Tail
1. Tail ::= w Tail | ε

2

0. S ::= z x w Tail | a aTail
1. aTail ::= S Tail | z x Tail
2. Tail ::= w Tail | ε

3

