Interpreters & More LL Grammars

CSE 401 Section 5

Kory Watson Aaron Johnston Miya Natsuhara Sam Wolfson

Announcements

Parser & AST due tonight!

- Homework 3 (LL grammars) due Monday
 - Only **one** late day max so we can distribute solutions in time for...

Midterm next Friday (1 week away)!

Interpreters vs. Compilers

- Compilers
 - Translate between different languages
 - e.g. MiniJava ⇒ x86 ASM
 - e.g. Java ⇒ Java Byte Code

Interpreters vs. Compilers

- Compilers
 - Translate between different languages
 - e.g. MiniJava ⇒ x86 ASM
 - e.g. Java ⇒ Java Byte Code
- Interpreters
 - Take action upon a piece of code as it is read

Interpreters vs. Compilers

- Compilers

- Translate between different languages
- e.g. MiniJava ⇒ x86 ASM
- e.g. Java ⇒ Java Byte Code

- Interpreters

Take action upon a piece of code as it is read

Implementation

- Frontend is the same!
- Interpreters
 - Execute the AST
- Compilers
 - Translate the AST

Interpreter Demo

LL Grammars

Now that you've taken a look at LL grammars, let's review again...

Left-to-Right
Only takes one pass,
performed from the left

At each point, finds the derivation for the leftmost handle **(top-down)**

Leftmost

1 Terminal Lookahead

Must determine derivation
from the next unparsed
terminal in the string

Agenda

- What LL (Top-Down) Parsing Looks Like
- LL Grammar Issues
 - FIRST Conflict
 - FIRST FOLLOW Conflict
 - Recursion
 - Indirect Left Recursion

```
0. S ::= a B
1. B ::= C x | y
2. C ::= ε | z
```

Lookahead Remaining z x

0. S ::= a B
1. B ::= C x | y

2. $C ::= \varepsilon \mid z$

Lookahead Remaining

ZX

- 0. S ::= a B
 1. B ::= C x | y
- 2. $C ::= \epsilon \mid z$

Lookahead Remaining

2

- 0. S ::= a B
- 1. B ::= C x | y 2. C ::= ϵ | z

Lookahead Remaining

2

- 0. S ::= a B
- 1. B ::= $C \times | y$
- 2. C ::= ϵ | z

Lookahead Remaining

X

Agenda

- What LL (Top-Down) Parsing Looks Like
- LL Grammar Issues
 - FIRST Conflict
 - FIRST FOLLOW Conflict
 - Recursion
 - Indirect Left Recursion

Let's change the grammar a little bit. (Grammar 1)

Lookahead Remaining z x

What's the issue?

The FIRST sets of the right-hand sides for the **SAME NON-TERMINAL** must be disjoint!

Fix: Factor out the Common Prefix

```
    S::= a Tail
    Tail ::= B | w
    B::= C x | y
    C::= ε | z
```


0. S ::= a Tail

1. Tail ::= B | w

2. B ::= C x | y 3. C ::= ϵ | z

Lookahead Remaining

ZX

Purple trees are the same!

Agenda

- What LL (Top-Down) Parsing Looks Like
- LL Grammar Issues
 - FIRST Conflict
 - FIRST FOLLOW Conflict
 - Left Recursion
 - Indirect Left Recursion

Watch out for empty rhs (ε-productions) too! (Grammar 2)

Changing the grammar again...

```
0. S ::= a B

1. B ::= C x | y

2. C ::= ε | x
```

Lookahead Remaining

a

Watch out for empty rhs (ε-productions) too! (Grammar 2)

0. S ::= a B 1. B ::= C x | y
2. C ::= ε | x

Lookahead Remaining

Watch out for empty rhs (ε-productions) too!

What's the issue?

Because C is nullable, its FOLLOW set must also be disjoint from the FIRST sets of its right-hand sides!

Fix (Various): Substitute the Common Prefix, then Factor

Agenda

- What LL (Top-Down) Parsing Looks Like
- LL Grammar Issues
 - FIRST Conflict
 - FIRST FOLLOW Conflict
 - Left Recursion
 - Indirect Left Recursion

Let's change the grammar again! (Grammar 3)

Lookahead Remaining z x

What's the issue?

Left recursion can't be parsed by LL(1) parsers!

To fix the issue: Make a tail rule again!

- S::= a Tail | w Tail
 Tail ::= B Tail | ε
 B::= C x | y
 C::= ε | z
- 1. Turn suffix of all S's recursive rhs into a tail non-terminal.
 - 2. Append the tail non-terminal to all of its rhs options.
- 3. Add the empty string (ϵ) as a rhs for the tail production.
 - 4. Append the tail to every non-recursive rhs.

- 0. S ::= a Tail | w Tail
- 1. Tail ::= B Tail | ϵ
- 2. B ::= C x | y
- 3. C ::= ε | z

Lookahead Remaining

a z x

Agenda

- What LL (Top-Down) Parsing Looks Like
- LL Grammar Issues
 - FIRST Conflict
 - FIRST FOLLOW Conflict
 - Left Recursion
 - Indirect Left Recursion

Watch out for indirect left recursion, too!

Changing the grammar again...

```
0. S ::= B w | a B

1. B ::= S | z x | y

2. C ::= C x | y
```

Lookahead Remaining z x

Watch out for indirect left recursion, too!

To fix the issue: Substitute, then eliminate left recursion!

1. Tail ::= w Tail | ε

2. Tail ::= w Tail | ε

Note: **NEVER** remove the starting non-terminal!

The start symbol of the new grammar should be the same