Interpreters &
More LL Grammars

Announcements

- Parser & AST due tonight!

- Homework 3 (LL grammars) due Monday
- Only one late day max so we can distribute solutions in time for...

- Midterm next Friday (1 week away)!

Interpreters vs. Compilers

- Compilers
- Translate between different JAVA x86 ASM
languages
) - Source . Target
e.g. MiniJava = x86 ASM ouree | compiter [y T2

- e.g.Java = Java Byte Code

Interpreters vs. Compilers

Compilers

Translate between different
languages

e.g. MiniJava = x86 ASM

e.g. Java = Java Byte Code

Interpreters

Take action upon a piece of
code asitis read

PYTHON

Source
Code

[

Interpreter

Il

Behavior!

Interpreters vs. Compilers

- Compilers JAVA x86 ASM

- Translate between different

languages Sg:;ze | compiler > T:;gzt
- e.g.MiniJava = x86 ASM
- e.g.Java = Java Byte Code ” ”
Interpreter Interpreter

- Interpreters

- Take action upon a piece of v v

code as itis read Behavior! Behavior!

JAVA

Implementation Source

Code

- Frontend is the same!

=

- Interpreters Erontend

- Execute the AST

Interpreter Compiler

- Compilers

E:} Code Gen

- Translate the AST

()

Interpret. Visitor <:|

ﬂ x86 ASM
Behavior!
Target
Code

Interpreter Demo

LL Grammars

Now that you’ve taken a look at LL grammars, let’s review again...

Left-to-Right
Only takes one pass,
performed from the left

L L (1)

Leftmost
At each point, finds the
derivation for the leftmost
handle (top-down)

1 Terminal Lookahead
Must determine derivation
from the next unparsed
terminal in the string

Agenda

- WhatLL (Top-Down) Parsing Looks Like

- LL Grammar Issues
- FIRST Conflict
- FIRST FOLLOW Conflict
- Recursion

- Indirect Left Recursion

Top-Down Derivation of “a z x”

B
X
|

y

N R O
Q W W
[

m Q o

|
Z

Lookahead = Remaining

A o

Top-Down Derivation of “a z x”

S 0. S ::= a B
| 1. B ::=Cx | vy
B 2. C ::=¢ | z

Lookahead Remaining

G o

Top-Down Derivation of “a z x”

S 0. S ::= a B
| 1. B ::=Cx | vy
B 2. C ::=¢ | z
|
C
Lookahead Remaining
2] .
d X

Top-Down Derivation of “a z x”

S
I

B
|

C

0. S ::= a B
1. B ::=Cx | vy
2. C ::=¢ | z

Lookahead Remaining

[] X

Top-Down Derivation of “a z x”

S

|

B

|
C

0. S ::= a B
1. B ::=Cx | vy
2. C ::=¢ | z

Lookahead Remaining

(]

Agenda

- What LL (Top-Down) Parsing Looks Like

- LL Grammar Issues
- FIRST Conflict
- FIRST FOLLOW Conflict
- Recursion

- Indirect Left Recursion

Let’s change the grammar a little bit. (Grammar 1)

N = O
Q T 0
I
@
X
N

Lookahead = Remaining

A x

Top-Down Derivation of “a z x”

0. S = a | w
S S 1. B = Cx | vy
| | 2. C = ¢ | z
B W
OR Lookahead Remaining

G o

Top-Down Derivation of “a z x”

S S
l |

B w We don’t know!

WHICH? ,
We are using an LL(1)
parser, we can’t see

more than a!

What’s the issue?

|
m QWM
— X | ™

S

The FIRST sets of the right-hand sides for
the SAME NON-TERMINAL must be disjoint!

Fix: Factor out the Common Prefix

0. S ::= a Tail
1. Tail =B | w
2. B = C x | vy
3. C = ¢ | z

Top-Down Derivation of “a z x”

Lookahead Remaining

G o

Top-Down Derivation of “a z x”

B Purple trees
are the same!

s
|
B
|
C

Agenda

- What LL (Top-Down) Parsing Looks Like

- LL Grammar Issues
- FIRST Conflict
- FIRST FOLLOW Conflict
- Left Recursion

- Indirect Left Recursion

Watch out for empty rhs (e-productions) too! (Grammar 2)

Changing the grammar again...

0. S = a B
1. B = C x | v
2. C = & | x

Lookahead = Remaining

] X

Watch out for empty rhs (e-productions) too! (Grammar 2)

(@)

Lookahead Remaining

(]

Watch out for empty rhs (e-productions) too!

s B oais
\ . ::
B
| OR |
C c Lookahead Remaining

Top-Down Derivation of “a x”

S S
I \ We don’t know!
B B
We are using an LL(1) parser, we
c WHICH? C can’t look at more than the only x!

Therefore, we can’t know that
there is no input after the x.

What’s the issue?

|
m 0 O

Because Cis nullable, its FOLLOW set must
also be disjoint from the FIRST sets of its
right-hand sides!

Fix (Various): Substitute the Common Prefix, then Factor

0. S = a B

1 2. B =x | xx | y
- —_— ==
0. S ::= a B

2 B = x Tail | y

Agenda

- What LL (Top-Down) Parsing Looks Like

- LL Grammar Issues
- FIRST Conflict
- FIRST FOLLOW Conflict
- Left Recursion

- Indirect Left Recursion

Let’s change the grammar again! (Grammar 3)

N = O
Q T 0
I
m QO W

— X

Lookahead = Remaining

3] x

Top-Down Derivation of “a z x”

0. S = S | a | w
S S
SB ”SB 2- Cmme g
OR SB
/ Lookahead Remaining
recursion
2 EY X
a a

Top-Down Derivation of “a z x”

S S
A [\
SB SB We don’t know!

/1

WHICH? /S B We are using an LL(1)
ursion parser, we can’t see
B more than a!

re
/
a a

What’s the issue?

I
m Q|0
— X | W
=

Left recursion can’t be parsed by LL(1) parsers!

To fix the issue: Make a tail rule again!

0. S ::= a Tail | w Tail
1. Tail ::= B Tail | ¢
2. B ::=C x | vy

3. C 1:= ¢ | =z

1. Turn suffix of all S’s recursive rhs into a tail non-terminal.
2. Append the tail non-terminal to all of its rhs options.
3. Add the empty string (€) as a rhs for the tail production.

4. Append the tail to every non-recursive rhs.

Top-Down Derivation of “a z x”

/\

a Tail

0.
1.
2.

S ::= a Tail |
Tail ::= B Tail
B ::=Cx | vy

C = ¢ | z

w Tail
| €

Lookahead Remaining

2]

Z X

Top-Down Derivation of “a z x”
S S
/\ /\
a Ta|I a B

B Ta|I Purple trees are C/

the same again!

Agenda

- What LL (Top-Down) Parsing Looks Like

- LL Grammar Issues
- FIRST Conflict
- FIRST FOLLOW Conflict
- Left Recursion

- Indirect Left Recursion

Watch out for indirect left recursion, too!

Changing the grammar again...

0. S = Bw | aB
1. B =S | z x |
2-—C =Cx1|-¥y

Lookahead Remaining

3] x

Watch out for indirect left recursion, too!

/S\ O.S..=BWIaB
S
Bw 1. B ::=S | z x
| | |
aB S
|
reusion

OR Lookahead Remaining

Z X

To fix the issue: Substitute, then eliminate left recursion!

1 0. S ::=Sw| zxw | a$S|] azzx
= = -

) 0. S ::=z xwTail | a S Tail | a z x Tail
1. Tail ::= w Tail | €
0. S = z X w Tail | a aTail

3 1. aTail ::= S Tail | z x Tail

2. Tail ::= w Tail | =

Note: NEVER remove the starting non-terminal!
The start symbol of the new grammar should be the same

