
CSE 401/M501 – Compilers

Dynamic Languages
Hal Perkins

Autumn 2019

UW CSE 401/M501 Autumn 2019 X-1

References

• An Efficient Implementation of Self, a
dynamically-typed object-oriented language
based on prototypes, Chambers, Unger, Lee,
OOPSLA 1989

• Earlier versions of this lecture by Vijay Menon,
CSE 501 Sp09, adapted from slides by
Kathleen Fisher

UW CSE 401/M501 Autumn 2019 X-2

Dynamic Typing (review)

JavaScript:

function foo(a, b) {
t1 = a.x; // runtime field lookup
t2 = b.y(); // runtime method lookup
t3 = t1 + t2; // runtime dispatch on ‘+’
return t3;
}

UW CSE 401/M501 Autumn 2019 X-3

Overview

• Self
– 30(!) year old research language
– One of earliest JIT compilation systems
– Pioneered techniques used today

• JavaScript
– Self with a Java syntax (plus other things…)
– Lots of interest in making it fast in recent years

UW CSE 401/M501 Autumn 2019 X-4

Self

• Prototype-based pure object-oriented language
• Designed by Randall Smith (Xerox PARC) and

David Ungar (Stanford University)
– Successor to Smalltalk-80
– “Self: The power of simplicity” at OOPSLA ‘87
– Initial implementation done at Stanford; then project

shifted to Sun Microsystems Labs
– Vehicle for implementation research

• Current version available from selflanguage.org

UW CSE 401/M501 Autumn 2019 X-5

Design Goals

• Occam’s Razor: Conceptual economy
– Everything is an object.
– Everything done using messages.
– No classes
– No variables

• Concreteness
– Objects should seem “real”
– GUI to manipulate objects directly

UW CSE 401/M501 Autumn 2019 X-6

How successful?

• Very well-designed language, but…
• Few users: not a popular success
• However, many research innovations
– Very simple computational model
– Enormous advances in compilation techniques
– Influenced the design of Java compilers
– JavaScript object model based on Self

UW CSE 401/M501 Autumn 2019 X-7

Language Overview

• Dynamically typed
• Everything is an object
• All computation via message passing
• Creation and initialization done by copying

example (prototype) object
• Operations on objects:
– send messages
– add new slots
– replace old slots
– remove slots

UW CSE 401/M501 Autumn 2019 X-8

Objects and Slots

Object consists of named slots.
– Data
• Such slots return contents upon evaluation; so act like

variables
– Assignment
• Set the value of

associated slot associated slot
– Method
• Slot contains Self code

– Parent
• References an object to inherit its slots

UW CSE 401/M501 Autumn 2019 X-9

Messages and Methods

• When a message is sent,
search the receiver object for a
slot with that name

• If none found, all parents are
searched
– Runtime error if more than one

parent has a slot with the same
name

• If slot found, its contents are
evaluated and returned
– Runtime error if no slot found

UW CSE 401/M501 Autumn 2019 X-10

parent*

x 3

x: ¬

parent*

print …

clone …

Messages and Methods

UW CSE 401/M501 Autumn 2019 X-11

parent*

x 3

x: ¬

parent*

print …

clone …

obj x 3

obj print print point
object

obj x: 4 obj
after setting
x slot to 4.

Mixing State and Behavior

UW CSE 401/M501 Autumn 2019 X-12

parent* …

+ add points

x 4

y 17

x: ¬

parent*

y: ¬

x random
number
generator

y 0

parent*

y: ¬

Object Creation

• To create an object,
we copy an old one

• We can add new
methods, override
existing ones, or even
remove methods

UW CSE 401/M501 Autumn 2019 X-13

• These operations also apply to parent slots

Changing Parent Pointers

UW CSE 401/M501 Autumn 2019 X-14

parent*: ¬

name Charles

name: ¬

jump …

eatFly …

parent*

dance …

eatCake …

p jump.
p eatFly.
p parent: prince.
p dance.

p

princefrog

Changing Parent Pointers

UW CSE 401/M501 Autumn 2019 X-15

parent*: ¬

name Charles

name: ¬

jump …

eatFly …

parent*

dance …

eatCake …

p jump.
p eatFly.
p parent: prince.
p dance

p

princefrog

Disadvantages of classes?

• Classes require programmers to understand a
more complex model
– To make a new kind of object, we have to create a

new class first
– To change an object, we have to change the class
– Infinite meta-class regression (What is the class of a

class? Or: Is a class an object, and if not, what is it?)
• But: Does Self require programmers to reinvent

structure?
– Common to structure Self programs with traits:

objects that simply collect behavior for sharing

UW CSE 401/M501 Autumn 2019 X-16

Contrast with C++

• C++
– Restricts expressiveness to ensure efficient

implementation

• Self
– Provides unbreakable high-level model of

underlying machine
– Compiler does fancy optimizations to obtain

acceptable performance

UW CSE 401/M501 Autumn 2019 X-17

Implementation Challenges I

• Many, many slow function calls:
– Function calls generally somewhat expensive
– Dynamic dispatch makes message invocation even

slower than typical procedure calls
– OO programs tend to have lots of small methods
– Everything is a message: even variable access!

UW CSE 401/M501 Autumn 2019 X-18

“The resulting call density of pure object-oriented
programs is staggering, and brings naïve implementations
to their knees” [Chambers & Ungar, PLDI 89]

Implementation Challenges II

• No static type system
– Each reference could point to any object, making

it hard to find methods statically

• No class structure to enforce sharing
– Copies of methods in every object creates lots of

space overhead

UW CSE 401/M501 Autumn 2019 X-19

Optimized Smalltalk-80 is roughly 10 times
slower than optimized C

Optimization Strategies

• Avoid per-object space requirements
• Compile, don’t interpret
• Avoid method lookup
• Inline methods wherever possible
– Saves method call overhead
– Enables further optimizations

UW CSE 401/M501 Autumn 2019 X-20

Clone Families
(Objects created from same prototype)

UW CSE 401/M501 Autumn 2019 X-21

Avoid per object data

Mutable

Fixed

prototype

Mutable

Fixed

Mutable

Fixed

Mutable

Fixed

Mutable

Fixed

clone family

Mutable

Map
Mutable

MapMapMap

MutableMutable

Fixed Info
Model

Implementation

Map:

Dynamic Compilation

UW CSE 401/M501 Autumn 2019 X-22

Avoid interpreting

LOAD R0
MOV R1 2
ADD R1 R2
…

010010100
100110001
001011010
00110

Source Byte Code Machine Code

Method
is entered

First
method
execution

• Method is converted to byte codes when entered into the system
• Compiled to machine code when first executed
• Code stored in cache

• if cache fills, previously compiled method flushed
• Requires entire source (byte) code to be available at runtime

Avoid method lookup

Lookup Cache

• Cache of recently used methods, indexed by
(receiver type, message name) pairs

• When a message is sent, compiler first
consults cache
– if found: invokes associated code
– if absent: performs general lookup and potentially

updates cache
• Berkeley Smalltalk would have been 37%

slower without this optimization

UW CSE 401/M501 Autumn 2019 X-23

Static Type Prediction

• Compiler predicts types that are unknown but likely:
– Arithmetic operations (+, -, <, etc.) have small integers as

their receivers 95% of time in Smalltalk-80
– ifTrue had Boolean receiver 100% of the time.

• Compiler inlines code (and test to confirm guess):

UW CSE 401/M501 Autumn 2019 X-24

if type = smallInt jump to method_smallInt
call general_lookup

Avoid method lookup

Avoid method lookup

Inline Caches

• First message send from a call site :
– general lookup routine invoked & backpatch

• Call site back-patched previously
– is previous method still correct?
• yes: invoke code directly
• no: proceed with general lookup & backpatch

• Successful about 95% of the time
• All compiled implementations of Smalltalk and

Self use inline caches.

UW CSE 401/M501 Autumn 2019 X-25

Avoid method lookup

Polymorphic Inline Caches
• Typical call site has <10 distinct receiver types

– Often can cache all receivers
• At each call site, for each new receiver, extend patch

code:

• After some threshold, revert to simple inline cache
(megamorphic site)

• Order clauses by frequency
• Inline short methods into PIC code

UW CSE 401/M501 Autumn 2019 X-26

if type = rectangle jump to method_rect
if type = circle jump to method_circle
call general_lookup

Inline methods

Customized Compilation

• Compile several copies of each method, one
for each receiver type

• Within each copy:
– Compiler knows the type of self
– Calls through self can be statically selected and

inlined

• Enables downstream optimizations
• Increases code size

UW CSE 401/M501 Autumn 2019 X-27

Inline methods

Type Analysis
• Constructed by compiler using flow analysis
• Type: set of possible maps for object

– Singleton: know map statically
– Union/Merge: know expression has one of a

fixed collection of maps
– Unknown: know nothing about expression

• If singleton, we can inline method
• If type is small, we can insert type test and

create branch for each possible receiver
(type casing)

UW CSE 401/M501 Autumn 2019 X-28

Inline methods

Message Splitting

• Type information above a merge
point is often better

• Move message send “before”
merge point:
– duplicates code
– improves type information
– allows more inlining

UW CSE 401/M501 Autumn 2019 X-29

Inline methods

PICS as Type Source

• Polymorphic inline caches build a call-site specific
type database as the program runs

• Compiler can use this runtime information rather
than the result of a static flow analysis to build type
cases

• Must wait until PIC has collected information
– When to recompile?
– What should be recompiled?

• Initial fast compile yielding slow code; then
dynamically recompile – hotspots

UW CSE 401/M501 Autumn 2019 X-30

Performance Improvements

• Initial version of Self was 4-5 times slower than
optimized C

• Adding type analysis and message splitting got within
a factor of 2 of optimized C

• Replacing type analysis with PICS improved
performance by further 37%

UW CSE 401/M501 Autumn 2019 X-31

Fairly recent Self compiler is within a factor
of 2 of optimized C.

Impact on Java

UW CSE 401/M501 Autumn 2019 X-32

Self with
PICs

Animorphics
Java

Java
Hotspot

Sun cancels Self

Java becomes popular

Sun buys A.J.

Animorphics
Smalltalk

Summary of Self

• “Power of simplicity”
– Everything is an object: no classes, no variables
– Provides high-level model that can’t be violated

(even during debugging)
• Fancy optimizations recover reasonable

performance
• Many techniques now used in Java compilers
• Papers describing various optimization

techniques available from Self web site

UW CSE 401/M501 Autumn 2019 X-33

JavaScript

• Self-like language with Java syntax
– Dynamic OO language
– Prototypes instead of classes
– Nothing to do with Java beyond syntax

• Originated in Netscape

• “Standard” on today’s browsers

UW CSE 401/M501 Autumn 2019 X-34

High-performance JavaScript

• Self approach:
– V8 (Google Chrome)
– SquirrelFish Extreme (Safari / WebKit)

• Trace compilation:
– TraceMonkey (Firefox)
– Tamarin (Adobe Flash/Flex)

UW CSE 401/M501 Autumn 2019 X-35

V8 (Google Chrome)

• Three primary features
– Fast property access
• Hidden classes

– Dynamic compiler
• Compile on first invocation
• Inline caching with back patching

– Generational garbage collection
• Segmented by types

• See
http://code.google.com/apis/v8/design.html

UW CSE 401/M501 Autumn 2019 X-36

Trace-Based Compilation

• Interpret initially
• Record trace information
– Single entry, multiple exit
– Loop header is typically trace start

• Compile hot trace (hot path through flowgraph)
– Interpreter jumps to trace code when available
– Stitch multiple traces together

• Specialize hot path (omit redundant checks)
– Claim this achieves benefits of inline caching

UW CSE 401/M501 Autumn 2019 X-37

