
CSE 401/M501 – Compilers

x86-64 Lite for Compiler Writers
A quick (a) introduction or (b) review

[pick one]

Hal Perkins
Autumn 2019

UW CSE 401/M501 Autumn 2019 J-1

Administrivia

• HW3 due tonight
– At most 1 late day allowed so we can get sample

solutions out in class on Wednesday before …
• … Midterm exam, Friday, in class
– Closed book, no notes; will include brief reference info

on exam as needed
– Contents: up to basics of static semantics (i.e., review

last week’s lectures and know general issues, not
detailed coding that is the next part of the project)

– Old exams and midterm topic list on the web now
– Review in sections this week

UW CSE 401/M501 Autumn 2019 J-2

Agenda

• Overview of x86-64 architecture
– Core part only, a bit beyond what we need for the

project, but not too much
• Upcoming lectures…
– Mapping source language constructs to x86
– Code generation for MiniJava project

• Rest of the quarter…
– More sophisticated back-end algorithms
– Survey of compiler optimizations

UW CSE 401/M501 Autumn 2019 J-3

Some x86-64 References
(Links on course web - * = most useful)

• **x86-64 Instructions and ABI
– Handout for University of Chicago CMSC 22620,

Spring 2009, by John Reppy

• *x86-64 Machine-Level Programming
– Earlier version of sec. 3.13 of Computer Systems:

A Programmer’s Perspective, 2nd ed. by Bryant &
O’Hallaron (CSE 351 textbook)

• Intel architecture processor manuals

UW CSE 401/M501 Autumn 2019 M-4

x86-64 Main features

• 16 64-bit general registers; 64-bit integers (but
int is 32 bits usually; long is 64 bits)

• 64-bit address space; pointers are 8 bytes
• 16 SSE registers for floating point, SIMD
• Register-based function call conventions
• Additional addressing modes (pc relative)
• 32-bit legacy mode
• Some pruning of old features

UW CSE 401/M501 Autumn 2019 M-5

x86-64 Assembler Language

• Target for our compiler project
But, the nice thing about standards…
• Two main assembler languages for x86-64
– Intel/Microsoft version – what’s in the Intel docs
– AT&T/GNU assembler – what we’re generating

and what’s in the linked handouts and 351 book
• Use gcc –S to generate asm code from C/C++ code

• Slides use gcc/AT&T/GNU syntax

UW CSE 401/M501 Autumn 2019 J-6

Intel vs. GNU Assembler
• Main differences between Intel docs and gcc assembler

• Intel docs include many complex, historical instructions and
artifacts that aren’t commonly used by modern compilers –
and we won’t use them either

UW CSE 401/M501 Autumn 2019 M-7

Intel/Microsoft AT&T/GNU as

Operand order: op a,b a = a op b (dst first) b = a op b (dst last)

Memory address [baseregister+offset] offset(baseregister)

Instruction mnemonics mov, add, push, … movq, addq, pushq [explicit
operand size added to end]

Register names rax, rbx, rbp, rsp, … %rax, %rbx, %rbp, %rsp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

x86-64 Memory Model

• 8-bit bytes, byte addressable
• 16-, 32-, 64-bit words, double words and quad

words, respectively (Intel terminology)
– That’s why the ‘q’ in 64-bit instructions like movq,

addq, etc.
• Data should usually be aligned on “natural”

boundaries for performance, although unaligned
accesses are generally supported – but with a big
performance penalty on many machines

• Little-endian – address of a multi-byte integer is
address of low-order byte

UW CSE 401/M501 Autumn 2019 J-8

x86-64 registers

• 16 64-bit general registers
– %rax, %rbx, %rcx, %rdx, %rsi, %rdi, %rbp, %rsp,

%r8-%r15
• Registers can be used as 64-bit integers or

pointers, or as 32-bit ints
– Also possible to reference low-order 16- and 8-bit

chunks – we won’t for the most part
• To simplify our project we’ll use only 64-bit

data (ints, pointers, even booleans!)

UW CSE 401/M501 Autumn 2019 M-10

Instruction Format

• Typical data manipulation instruction
opcode src,dst # comment

• Meaning is
dst ⟵ dst op src

• Normally, one operand is a register, the other is a
register, memory location, or integer constant
– Can’t have both operands in memory – can’t encode two

memory addresses in a single instruction (e.g., cmp, mov)
• Language is free-form, comments and labels may

appear on lines by themselves (and can have multiple
labels per line of code)

UW CSE 401/M501 Autumn 2019 J-11

x86-64 Memory Stack

• Register %rsp points to the “top” of stack
– Dedicated for this use; don’t use otherwise
– Points to the last 64-bit quadword pushed onto

the stack (not next “free” quadword)
– Should always be quadword (8-byte) aligned
• It will start out this way, and will stay aligned unless

your code does something bad
• Should be 16-byte aligned on function calls normally

– Stack grows down (towards lower addresses)

UW CSE 401/M501 Autumn 2019 J-12

Stack Instructions

pushq src
%rsp ⟵ %rsp – 8; memory[%rsp] ⟵ src
(e.g., push src onto the stack)

popq dst
dst ⟵ memory[%rsp]; %rsp ⟵ %rsp + 8
(e.g., pop top of stack into dst and logically remove
it from the stack)

UW CSE 401/M501 Autumn 2019 J-13

Stack Frames
• When a method is called, a stack frame is traditionally

allocated on the logical “top” of the stack to hold its
local variables

• Frame is popped on method return
• By convention, %rbp (base pointer) points to a known

offset into the stack frame
– Local variables referenced relative to %rbp
– Base pointer common in 32-bit x86 code; less so in x86-64

code where push/pop used less & stack frame normally
has fixed size so locals can be referenced from %rsp easily

– We will use %rbp in our project – simplifies addressing of
local variables and compiler bookkeeping

UW CSE 401/M501 Autumn 2019 J-14

Operand Address Modes (1)

• These should cover most of what we’ll need
movq $17,%rax # store 17 in %rax
movq %rcx,%rax # copy %rcx to %rax
movq 16(%rbp),%rax # copy memory to %rax
movq %rax,-24(%rbp) # copy %rax to memory

• References to object fields work similarly – put
the object’s memory address in a register and use
that address plus an offset

• Remember: can’t have two memory addresses in
a single instruction

UW CSE 401/M501 Autumn 2019 J-15

Operand Address Modes (2)

• A memory address can combine the contents of
two registers (with one optionally multiplied by 2,
4, or 8) plus a constant:

basereg + indexreg*scale + constant
• Main use of general form is for array subscripting

or small computations - if the compiler is clever
• Example: suppose we have an array A of 8-byte

ints with address of the array in %rcx and
subscript i in %rax. Code to store %rbx in A[i]:

movq %rbx, (%rcx,%rax,8)
UW CSE 401/M501 Autumn 2019 J-16

Basic Data Movement and Arithmetic
Instructions
movq src,dst

dst ⟵ src

addq src,dst
dst ⟵ dst + src

subq src,dst
dst ⟵ dst – src

incq dst
dst ⟵ dst + 1

decq dst
dst ⟵ dst - 1

negq dst
dst ⟵ - dst
(2’s complement
arithmetic negation)

UW CSE 401/M501 Autumn 2019 J-17

Integer Multiply and Divide

imulq src,dst
dst ⟵ dst * src
dst must be a register

cqto
%rdx:%rax ⟵ 128-bit sign
extended copy of %rax
(why??? To prep
numerator for idivq!)

idivq src
Divide %rdx:%rax by src
(%rdx:%rax holds sign-
extended 128-bit value;
cannot use other registers
for division)
%rax ⟵ quotient
%rdx ⟵ remainder

(no division in MiniJava!)

UW CSE 401/M501 Autumn 2019 J-18

Bitwise Operations

andq src,dst
dst ⟵ dst & src

orq src,dst
dst ⟵ dst | src

xorq src,dst
dst ⟵ dst ^ src

notq dst
dst ⟵ ~ dst
(logical or 1’s complement)

UW CSE 401/M501 Autumn 2019 J-19

Shifts and Rotates

shlq dst,count
dst ⟵ dst shifted left
count bits

shrq dst,count
dst ⟵ dst shifted right
count bits (0 fill)

sarq dst,count
dst ⟵ dst shifted right
count bits (sign bit fill)

rolq dst,count
dst ⟵ dst rotated left
count bits

rorq dst,count
dst ⟵ dst rotated right
count bits

UW CSE 401/M501 Autumn 2019 J-20

Uses for Shifts and Rotates

• Can often be used to optimize multiplication and
division by small constants
– If you’re interested, look at “Hacker’s Delight” by Henry

Warren, A-W, 2nd ed, 2012
• Lots of very cool bit fiddling and other algorithms

– But be careful – be sure semantics are OK
• Example: right shift is not the same as integer divide for

negative numbers (why?)
• There are additional instructions that shift and rotate

double words, use a calculated shift amount instead
of a constant, etc.

UW CSE 401/M501 Autumn 2019 J-21

Load Effective Address

• The unary & operator in C/C++
leaq src,dst # dst ⟵ address of src

– dst must be a register
– Address of src includes any address arithmetic or

indexing
– Useful to capture addresses for pointers,

reference parameters, etc.
– Also useful for computing arithmetic expressions

that match r1+scale*r2+const

UW CSE 401/M501 Autumn 2019 J-22

C(Rb,Ri,S)
⇕

Mem[Ri + Rb*S + C]

Not with lea!

Control Flow - GOTO

• At this level, all we have is goto and conditional
goto

• Loops and conditional statements are synthesized
from these

• Note: random jumps play havoc with pipeline
efficiency; much work is done in modern
compilers and processors to minimize this impact

UW CSE 401/M501 Autumn 2019 J-23

Unconditional Jumps

jmp dst
%rip ⟵ address of dst

• dst is usually a label in the code (which can be
on a line by itself)

• dst address can also be indirect using the
address in a register or memory location
(*reg or *(reg)) – use for method calls, switch

UW CSE 401/M501 Autumn 2019 J-24

Conditional Jumps

• Most arithmetic instructions set “condition
code” bits to record information about the
result (zero, non-zero, >0, etc.)
– True of addq, subq, andq, orq; but not imulq,

idivq, leaq
• Other instructions that set condition codes

cmpq src,dst # compare dst to src (e.g., dst-src)
testq src,dst # calculate dst & src (logical and)
– These do not alter src or dst

UW CSE 401/M501 Autumn 2019 J-25

Conditional Jumps Following
Arithmetic Operations
jz label # jump if result == 0
jnz label # jump if result != 0
jg label # jump if result > 0
jng label # jump if result <= 0
jge label # jump if result >= 0
jnge label # jump if result < 0
jl label # jump if result < 0
jnl label # jump if result >= 0
jle label # jump if result <= 0
jnle label # jump if result > 0
• Obviously, the assembler is providing multiple opcode

mnemonics for several actual instructions

UW CSE 401/M501 Autumn 2019 J-26

Compare and Jump Conditionally

• Want: compare two operands and jump if a
relationship holds between them

• Would like to have this instruction
jmpcond op1,op2,label

but can’t, because 3-operand instructions
can’t be encoded in x86-64

(also true of most other machines)

UW CSE 401/M501 Autumn 2019 J-27

cmp and jcc

• Instead, we use a 2-instruction sequence
cmpq op1,op2
jcc label

where jcc is a conditional jump that is taken if
the result of the comparison matches the
condition cc

UW CSE 401/M501 Autumn 2019 J-28

Conditional Jumps Following
Arithmetic Operations
cmp op2, op1 # notice: operands reversed!

je label # jump if op1 == op2
jne label # jump if op1 != op2
jg label # jump if op1 > op2
jng label # jump if op1 <= op2
jge label # jump if op1 >= op2
jnge label # jump if op1 < op2
jl label # jump if op1 < op2
jnl label # jump if op1 >= op2
jle label # jump if op1 <= op2
jnle label # jump if op1 > op2

• Again, the assembler is mapping more than one mnemonic to some
machine instructions

UW CSE 401/M501 Autumn 2019 J-29

if (b < a)
goto thing;

set condition codes
based on b - a
cmpq a, b

jump if b < a
equivalent to: (b - a) < 0
jl thing

Function Call and Return

• The x86-64 instruction set itself only provides for
transfer of control (jump) and return

• Stack is used to capture return address and recover it
• Everything else – parameter passing, stack frame

organization, register usage – is a matter of software
convention and not defined by the hardware
– But you should follow conventions so that your code can

be called from other software!!!!!
• Even if you wrote all of the code – don’t confuse people trying to

understand your code
• Even if you wrote all the code – you might have to use gdb which

expects the standard calling conventions J

UW CSE 401/M501 Autumn 2019 J-30

call and ret Instructions

call label
– Push address of next instruction and jump
– %rsp ⟵ %rsp – 8; memory[%rsp] ⟵ %rip

%rip ⟵ address of label
– Address can also be in a register or memory as with jmp – we’ll

use these for dynamic dispatch of method calls (more later)

ret
– Pop address from top of stack and jump
– %rip ⟵ memory[%rsp]; %rsp ⟵ %rsp + 8
– WARNING! The word on the top of the stack had better be the

address we want and not some leftover data

UW CSE 401/M501 Autumn 2019 J-31

enter and leave

• Complex instructions for languages with
nested procedures
– enter can be slow on current processors – best

avoided – i.e., don’t use it in your project
– leave is equivalent to

mov %rbp,%rsp
pop %rbp

and is generated by many compilers. Fits in 1 byte,
saves space. Not clear if it’s any faster.

UW CSE 401/M501 Autumn 2019 J-32

x86-64-Register Usage

• %rax – function result
• Arguments 1-6 passed in these registers in order
– %rdi, %rsi, %rdx, %rcx, %r8, %r9
– For Java/C++ “this” pointer is first argument, in %rdi

• More about “this” later

• %rsp – stack pointer; value must be 8-byte
aligned always and 16-byte aligned when calling a
function

• %rbp – frame pointer (optional use)
– We’ll use it

UW CSE 401/M501 Autumn 2019 M-33

x86-64 Register Save Conventions

• A called function must preserve these registers (or
save/restore them if it wants to use them)
– %rbx, %rbp, %r12-%r15

• %rsp isn’t on the “callee save list”, but needs to be
properly restored for return

• All other registers can change across a function call
– Debugging/correctness note: always assume every

called function will change all registers it is allowed to
• (including registers containing function parameters!)

UW CSE 401/M501 Autumn 2019 M-34

x86-64 Function Call
• Caller places up to 6 arguments in registers, rest on

stack, then executes call instruction (which pushes 8-
byte return address)

• On entry, called function prologue sets up the stack
frame:

pushq %rbp # save old frame ptr
movq %rsp,%rbp # new frame ptr is top of

stack after ret addr and
old rbp pushed

subq $framesize,%rsp # allocate stack frame
(size should be multiple
of 16 normally)

UW CSE 401/M501 Autumn 2019 M-35

x86-64 Function Return

• Called function puts result (if any) in %rax and
restores any callee-save registers if needed

• Called function returns with:
movq %rbp,%rsp # or use leave instead
popq %rbp # of movq/popq
ret

• If caller allocated space for arguments it
deallocates as needed

UW CSE 401/M501 Autumn 2019 M-36

Caller Example

• n = sumOf(17,42)
movq $42,%rsi # load arguments in
movq $17,%rdi # either order
call sumOf # jump & push ret addr
movq %rax,offsetn(%rbp) # store result

UW CSE 401/M501 Autumn 2019 J-37

Example Function

• Source code
int sumOf(int x, int y) {

int a, int b;
a = x;
b = a + y;
return b;

}

UW CSE 401/M501 Autumn 2019 J-38

Assembly Language Version
int sumOf(int x, int y) {
int a, int b;
sumOf:

pushq %rbp # prologue
movq %rsp,%rbp
subq $16,%rsp

a = x;
movq %rdi,-8(%rbp)

b = a + y;
movq -8(%rbp),%rax
addq %rsi,%rax
movq %rax,-16(%rbp)

return b;
movq -16(%rbp),%rax
movq %rbp,%rsp
popq %rbp
ret

}

UW CSE 401/M501 Autumn 2019 J-39

int sumOf(int x, int y) {
int a, int b;
a = x;
b = a + y;
return b;

}

Stack Frame for sumOf

UW CSE 401/M501 Autumn 2019 J-40

The Nice Thing About Standards…

• The above is the System V/AMD64 ABI convention
(used by Linux, OS X)

• Microsoft’s x64 calling conventions are slightly
different (sigh…)
– First four parameters in registers %rcx, %rdx, %r8, %r9; rest

on the stack
– Called function stack frame always includes empty space

for called function to save values passed in parameter
registers if desired

• Not relevant for us, but worth being aware of it
– (except that providing space in each stack frame to save

parameter registers will be handy for our simple code gen)

UW CSE 401/M501 Autumn 2019 M-41

Coming Attractions

• Now that we’ve got a basic idea of the x86-64
instruction set, we need to map language
constructs to x86-64
– Code Shape

• Then need to figure out how to get compiler
to generate this and how to bootstrap things
to run our compiled programs

• But first! Midterm Friday!!! - See you then!

UW CSE 401/M501 Autumn 2019 J-42

