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Administrivia

HW?2 (LR parsing) due tomorrow night

Parser/AST project assighment out — due on
Oct. 24, a week from tomorrow

— Details, overview, tools, etc. in sections tomorrow

mini-HW3 also out now
— Short (a couple of questions on LL grammars)
— Covered today in class and tomorrow in sections

— Due Mon. Oct. 28, with max 1 late day so we can
make solutions available before...

Midterm exam on Friday, Nov. 1, in class!
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Agenda

Top-Down Parsing

Predictive Parsers

LL(k) Grammars

Recursive Descent

Grammar Hacking

— Left recursion removal

— Left factoring
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Basic Parsing Strategies (1)

* Bottom-up

— Build up tree from leaves

 Shift next input or reduce a handle

* Accept when all input read and reduced to start symbol

of the grammar

— LR(k) and subsets (SLR(k), LALR(k), ...)

remaining input
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Basic Parsing Strategies (2)

* Top-Down
— Begin at root with start symbol of grammar
— Repeatedly pick a non-terminal and expand
— Success when expanded tree matches input

/AN

UW CSE 401/M501 Autumn 2019

F-5



Top-Down Parsing

» Situation: have completed part of a left-most derivation
S =>* wAo =>* wxy
e Basic Step: Pick some production
A =By By - By
that will properly expand A to
match the input

— Want this to be
deterministic (i.e.,

no backtracking) /%\
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Predictive Parsing

* |f we are located at some non-terminal A, and there
are two or more possible productions

A=

A:=03
we want to make the correct choice by looking at just
the next input symbol

* If we can do this, we can build a predictive parser
that can perform a top-down parse without
backtracking
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Example

* Programming language grammars are often suitable
for predictive parsing

* Typical example

stmt ::=id=exp ; | return exp ;
| if (exp ) stmt | while (exp ) stmt

If the next part of the input begins with the tokens

IF LPAREN ID(X) ...
we should expand stmt to an if-statement
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LL(1) Property

A grammar has the LL(1) property if, for all
non-terminals A, if productions A ::= o and

A ::= 3 both appear in the grammar, then it is
true that

FIRST(at) N FIRST(B) = @

(Provided that neither a or B is € (i.e., empty). If either one is € then we
need to look at FOLLOW sets. ...)

* |f a grammar has the LL(1) property, we can
build a predictive parser for it that uses
1 symbol lookahead
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LL(k) Parsers

e An LL(k) parser

— Scans the input Left to right
— Constructs a Leftmost derivation
— Looking ahead at most k symbols

* 1-symbol lookahead is enough for many
practical programming language grammars

— LL(k) for k>1 is rare in practice

* and even if the grammar isn’t quite LL(1), it may be
close enough that we can pretend it is LL(1) and cheat a
little when it isn’t
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Table-Driven LL(k) Parsers

* As with LR(k), a table-driven parser can be
constructed from the grammar

* Example
1. S::=(S)S
2. 5::=[S ]S
3. S:=¢€

* Table (one row per non-terminal)

( ) [ ] $
S |1 3 | 2 | 3 | 3
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LL vs LR (1)

* Tools can automatically generate parsers for
both LL(1) and LR(1) grammars

* LL(1) has to make a decision based on a single
non-terminal and the next input symbol

 LR(1) can base the decision on the entire left
context (i.e., contents of the stack) as well as

the next input symbol
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LL vs LR (2)

". LR(1) is more powerful than LL(1)

— Includes a larger set of languages

. (editorial opinion) If you’re going to use a
tool-generated parser, might as well use LR

— But there are some very good LL parser tools out there
(ANTLR, JavaCg, ...) that might win for other reasons
(documentation, IDE support, integrated AST generation,
local culture/politics/economics etc.)
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Recursive-Descent Parsers

* One big advantage of top-down parsing is that
it is easy to implement by hand

— And even if you use automatic tools, the code may
be easier to follow and debug

* Key idea: write one function (method,
procedure) corresponding to each major non-
terminal in the grammar

— Each of these functions is responsible for matching
its non-terminal with the next part of the input
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Example: Statements

Grammar Method for this grammar rule
stmt ::=id = exp ; // parse stmt ::= id=exp; | ...
| return exp ; void stmt( ) {

| if (exp ) stmt

| while ( exp ) stmt switch(nextToken) {

RETURN: returnStmt(); break;
IF: ifStmt(); break;

WHILE: whileStmt(); break;
ID: assignStmt(); break;
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Example (more statements)

// parse while (exp) stmt // parse return exp ;
void whileStmt() { void returnStmt() {
// skip “while” “(” // skip “return”
getNextToken(); getNextToken();
getNextToken();
// parse expression
// parse condition exp();
exp();
/] skip “;"
// skip “)” getNextToken();
getNextToken(); }

// parse stmt
stmt();
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Recursive-Descent Recognizer

* Easy!

e Pattern of method calls traces leftmost derivation
In parse tree

 Examples here only handle valid programs and
choke on errors. Real parsers need:

— Better error recovery (don’t get stuck on a bad token)

e Often: skip input until something in the FOLLOW set of the
nonterminal being expanded is reached

— Semantic checks (declarations, type checking, ...)

— Some sort of processing after recognizing (build AST,
1-pass code generation, ...)
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Invariant for Parser Functions

* The parser functions need to agree on where they
are in the input

* Useful invariant: When a parser function is called,
the current token (next unprocessed piece of the
input) is the token that begins the expanded non-
terminal being parsed

— Corollary: when a parser function is done, it must have

completely consumed the input correspond to that non-
terminal
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Possible Problems

 Two common problems for recursive-descent
(and LL(1)) parsers

— Left recursion (e.g., E::=E +T | ..)
— Common prefixes on the right side of productions
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Left Recursion Problem

Grammar rule
expr ::=expr + term
| term

And the bug is????

Code
// parse expr ::= ...
void expr() {

expr();
if (current token is PLUS) {

getNextToken();
term();

}
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Left Recursion Problem

* |f we code up a left-recursive rule as-is, we get
an infinite recursion

* Non-solution: replace with a right-recursive
rule
expr ::=term + expr | term

— Why isn’t this the right thing to do?
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Formal Left Recursion Solution

* Rewrite using right recursion and a new non-terminal
* Original: expr ::= expr + term | term
* New:
expr ::= term exprtail
exprtail ::= + term exprtail | €
* Properties

— No infinite recursion if coded up directly

— Maintains required left associatively (if you handle things
correctly in the semantic actions)
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Another Way to Look at This

* Observe that
expr ;= expr + term | term
generates the sequence
(...((term + term) + term) + ...) + term
 We can sugar the original rule to reflect this
expr ::=term { + term }*
. Thcijs leads directly to recursive-descent parser
code

— Just be sure to do the correct thing to handle
associativity as the terms are parsed
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Code for Expressions (1)

// parse // parse
// expr:= term {+term }* // term ::=factor { * factor }*
void expr() { void term() {
ter:T(); bol is PLUS factorl);
while {next symbol is ) while (next symbol is TIMES) {
getNextToken();
term(); getNextToken();
} factor();
} }

}
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Code for Expressions (2)

// parse
// factor ::=int | id | (expr)
void factor() {

case ID:
process identifier;

switch(nextToken) { getNextToken();
break;
case INT: case LPAREN:
process int constant; getNextToken();
getNextToken(); expr();
break; getNextToken();
}
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What About Indirect Left Recursion?

A grammar might have a derivation that leads to
a left recursion

A=>f,=>*B,=>Ay
e Solution: transform the grammar to one where all
productions are either

A ::=aa —i.e., starts with a terminal symbol, or
A ::= Aa —i.e., direct left recursion

then use formal left-recursion removal to
eliminate all direct left recursions
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Eliminating Indirect Left Recursion

* Basic idea: Rewrite all productions A ::= B... where
A and B are different non-terminals by using all
B ::= ... productions to replace the original rhs B
 Example: Suppose we have A ::= B, B ::= a, and
B ::=B. Replace A ::= B6 with A ::=ad and A ::= 36.
* Need to pick an order to process the non-

terminals to avoid re-introducing indirect left
recursions. Not complicated, just be systematic.

— Details in compiler or formal-language textbooks
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Second Problem: Left Factoring

* |f two rules for a non-terminal have right hand
sides that begin with the same symbol, we
can’t predict which one to use

* Formal solution: Factor the common prefix
into a separate production
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Left Factoring Example

* Original grammar
ifStmt ;= if ( expr ) stmt
| if (expr ) stmt else stmt
* Factored grammar
ifStmt ::=if ( expr ) stmt ifTail
ifTail ::=else stmt | €
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Parsing if Statements

But it’s easiest to just // parse

code up the “else //  if (expr) stmt [ else stmt ]

matches closest if” rule void ifStmt() { |

directly getNextToken(); // if
getNextToken(); //
expr();

(If you squint properly getNextToken(); //)

this is really just left stmt();

factoring where the two if (next symbol is ELSE) {

productions are parsed getNextToken(); // else

by a single routine) }Stmt()?

}
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Another Lookahead Problem

* Inlanguages like FORTRAN, parentheses are used for
both array subscripts and function calls

* A FORTRAN grammar includes something like
factor ::=id ( subscripts ) | id (arguments) | ...

 When the parser sees “id (”, how can it decide
whether this begins an array element reference or a
function call?
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Two Ways to Handle id ( ... )

e Use the type of id to decide

— Requires declare-before-use restriction if we want
to parse in 1 pass; also means parser needs
semantic information, not just grammar

* Use a covering grammar

factor ::=id ( commaSeparatedList ) | ...

and fix/check later when more information is
available (e.g., types)
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Top-Down Parsing Concluded

* Works with a smaller set of grammars than
bottom-up, but can be done for most sensible
programming language constructs

— Possibly with some grammar refactoring
* And maybe a little cheating (occasional extra lookahead, ...)

* |f you need to write a quick-n-dirty parser,
recursive descent is often the method of choice

— And some sophisticated hand-written parsers for real

languages (e.g., C++) are “based on” LL parsing, but
with lots of customizations
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Parsing Concluded

* That’s it!
* On to the rest of the compiler
* Coming attractions
— Intermediate representations (ASTs etc.)
— Semantic analysis (including type checking)

— Symbol tables
— & more...
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