CSE 401/M501 — Compilers

LL and Recursive-Descent Parsing
Hal Perkins
Autumn 2019

UW CSE 401/M501 Autumn 2019

F-1

Administrivia

HW?2 (LR parsing) due tomorrow night

Parser/AST project assighment out — due on
Oct. 24, a week from tomorrow

— Details, overview, tools, etc. in sections tomorrow

mini-HW3 also out now
— Short (a couple of questions on LL grammars)
— Covered today in class and tomorrow in sections

— Due Mon. Oct. 28, with max 1 late day so we can
make solutions available before...

Midterm exam on Friday, Nov. 1, in class!

UW CSE 401/M501 Autumn 2019

F-2

Agenda

Top-Down Parsing

Predictive Parsers

LL(k) Grammars

Recursive Descent

Grammar Hacking

— Left recursion removal

— Left factoring

UW CSE 401/M501 Autumn 2019

F-3

Basic Parsing Strategies (1)

* Bottom-up

— Build up tree from leaves

 Shift next input or reduce a handle

* Accept when all input read and reduced to start symbol

of the grammar

— LR(k) and subsets (SLR(k), LALR(k), ...)

remaining input

UW CSE 401/M501 Autumn 2019

F-4

Basic Parsing Strategies (2)

* Top-Down
— Begin at root with start symbol of grammar
— Repeatedly pick a non-terminal and expand
— Success when expanded tree matches input

/AN

UW CSE 401/M501 Autumn 2019

F-5

Top-Down Parsing

» Situation: have completed part of a left-most derivation
S =>* wAo =>* wxy
e Basic Step: Pick some production
A =By By - By
that will properly expand A to
match the input

— Want this to be
deterministic (i.e.,

no backtracking) /%\

UW CSE 401/M501 Autumn 2019

F-6

Predictive Parsing

* |f we are located at some non-terminal A, and there
are two or more possible productions

A=

A:=03
we want to make the correct choice by looking at just
the next input symbol

* If we can do this, we can build a predictive parser
that can perform a top-down parse without
backtracking

UW CSE 401/M501 Autumn 2019 F-7

Example

* Programming language grammars are often suitable
for predictive parsing

* Typical example

stmt ::=id=exp ; | return exp ;
| if (exp) stmt | while (exp) stmt

If the next part of the input begins with the tokens

IF LPAREN ID(X) ...
we should expand stmt to an if-statement

UW CSE 401/M501 Autumn 2019 F-8

LL(1) Property

A grammar has the LL(1) property if, for all
non-terminals A, if productions A ::= o and

A ::= 3 both appear in the grammar, then it is
true that

FIRST(at) N FIRST(B) = @

(Provided that neither a or B is € (i.e., empty). If either one is € then we
need to look at FOLLOW sets. ...)

* |f a grammar has the LL(1) property, we can
build a predictive parser for it that uses
1 symbol lookahead

UW CSE 401/M501 Autumn 2019 F-9

LL(k) Parsers

e An LL(k) parser

— Scans the input Left to right
— Constructs a Leftmost derivation
— Looking ahead at most k symbols

* 1-symbol lookahead is enough for many
practical programming language grammars

— LL(k) for k>1 is rare in practice

* and even if the grammar isn’t quite LL(1), it may be
close enough that we can pretend it is LL(1) and cheat a
little when it isn’t

UW CSE 401/M501 Autumn 2019 F-10

Table-Driven LL(k) Parsers

* As with LR(k), a table-driven parser can be
constructed from the grammar

* Example
1. S::=(S)S
2. 5::=[S]S
3. S:=¢€

* Table (one row per non-terminal)

() [] $
S |1 3 | 2 | 3 | 3

UW CSE 401/M501 Autumn 2019 F-11

LL vs LR (1)

* Tools can automatically generate parsers for
both LL(1) and LR(1) grammars

* LL(1) has to make a decision based on a single
non-terminal and the next input symbol

 LR(1) can base the decision on the entire left
context (i.e., contents of the stack) as well as

the next input symbol

UW CSE 401/M501 Autumn 2019 F-12

LL vs LR (2)

". LR(1) is more powerful than LL(1)

— Includes a larger set of languages

. (editorial opinion) If you’re going to use a
tool-generated parser, might as well use LR

— But there are some very good LL parser tools out there
(ANTLR, JavaCg, ...) that might win for other reasons
(documentation, IDE support, integrated AST generation,
local culture/politics/economics etc.)

UW CSE 401/M501 Autumn 2019 F-13

Recursive-Descent Parsers

* One big advantage of top-down parsing is that
it is easy to implement by hand

— And even if you use automatic tools, the code may
be easier to follow and debug

* Key idea: write one function (method,
procedure) corresponding to each major non-
terminal in the grammar

— Each of these functions is responsible for matching
its non-terminal with the next part of the input

UW CSE 401/M501 Autumn 2019 F-14

Example: Statements

Grammar Method for this grammar rule
stmt ::=id = exp ; // parse stmt ::= id=exp; | ...
| return exp ; void stmt() {

| if (exp) stmt

| while (exp) stmt switch(nextToken) {

RETURN: returnStmt(); break;
IF: ifStmt(); break;

WHILE: whileStmt(); break;
ID: assignStmt(); break;

UW CSE 401/M501 Autumn 2019 F-15

Example (more statements)

// parse while (exp) stmt // parse return exp ;
void whileStmt() { void returnStmt() {
// skip “while” “(” // skip “return”
getNextToken(); getNextToken();
getNextToken();
// parse expression
// parse condition exp();
exp();
/] skip “;"
// skip “)” getNextToken();
getNextToken(); }

// parse stmt
stmt();

UW CSE 401/M501 Autumn 2019 F-16

Recursive-Descent Recognizer

* Easy!

e Pattern of method calls traces leftmost derivation
In parse tree

 Examples here only handle valid programs and
choke on errors. Real parsers need:

— Better error recovery (don’t get stuck on a bad token)

e Often: skip input until something in the FOLLOW set of the
nonterminal being expanded is reached

— Semantic checks (declarations, type checking, ...)

— Some sort of processing after recognizing (build AST,
1-pass code generation, ...)

UW CSE 401/M501 Autumn 2019 F-17

Invariant for Parser Functions

* The parser functions need to agree on where they
are in the input

* Useful invariant: When a parser function is called,
the current token (next unprocessed piece of the
input) is the token that begins the expanded non-
terminal being parsed

— Corollary: when a parser function is done, it must have

completely consumed the input correspond to that non-
terminal

UW CSE 401/M501 Autumn 2019 F-18

Possible Problems

 Two common problems for recursive-descent
(and LL(1)) parsers

— Left recursion (e.g., E::=E +T | ..)
— Common prefixes on the right side of productions

UW CSE 401/M501 Autumn 2019 F-19

Left Recursion Problem

Grammar rule
expr ::=expr + term
| term

And the bug is????

Code
// parse expr ::= ...
void expr() {

expr();
if (current token is PLUS) {

getNextToken();
term();

}

UW CSE 401/M501 Autumn 2019

F-20

Left Recursion Problem

* |f we code up a left-recursive rule as-is, we get
an infinite recursion

* Non-solution: replace with a right-recursive
rule
expr ::=term + expr | term

— Why isn’t this the right thing to do?

UW CSE 401/M501 Autumn 2019 F-21

Formal Left Recursion Solution

* Rewrite using right recursion and a new non-terminal
* Original: expr ::= expr + term | term
* New:
expr ::= term exprtail
exprtail ::= + term exprtail | €
* Properties

— No infinite recursion if coded up directly

— Maintains required left associatively (if you handle things
correctly in the semantic actions)

UW CSE 401/M501 Autumn 2019 F-22

Another Way to Look at This

* Observe that
expr ;= expr + term | term
generates the sequence
(...((term + term) + term) + ...) + term
 We can sugar the original rule to reflect this
expr ::=term { + term }*
. Thcijs leads directly to recursive-descent parser
code

— Just be sure to do the correct thing to handle
associativity as the terms are parsed

UW CSE 401/M501 Autumn 2019 F-23

Code for Expressions (1)

// parse // parse
// expr:= term {+term }* // term ::=factor { * factor }*
void expr() { void term() {
ter:T(); bol is PLUS factorl);
while {next symbol is) while (next symbol is TIMES) {
getNextToken();
term(); getNextToken();
} factor();
} }

}

UW CSE 401/M501 Autumn 2019 F-24

Code for Expressions (2)

// parse
// factor ::=int | id | (expr)
void factor() {

case ID:
process identifier;

switch(nextToken) { getNextToken();
break;
case INT: case LPAREN:
process int constant; getNextToken();
getNextToken(); expr();
break; getNextToken();
}

UW CSE 401/M501 Autumn 2019 F-25

What About Indirect Left Recursion?

A grammar might have a derivation that leads to
a left recursion

A=>f,=>*B,=>Ay
e Solution: transform the grammar to one where all
productions are either

A ::=aa —i.e., starts with a terminal symbol, or
A ::= Aa —i.e., direct left recursion

then use formal left-recursion removal to
eliminate all direct left recursions

UW CSE 401/M501 Autumn 2019 F-26

Eliminating Indirect Left Recursion

* Basic idea: Rewrite all productions A ::= B... where
A and B are different non-terminals by using all
B ::= ... productions to replace the original rhs B
 Example: Suppose we have A ::= B, B ::= a, and
B ::=B. Replace A ::= B6 with A ::=ad and A ::= 36.
* Need to pick an order to process the non-

terminals to avoid re-introducing indirect left
recursions. Not complicated, just be systematic.

— Details in compiler or formal-language textbooks

UW CSE 401/M501 Autumn 2019 F-27

Second Problem: Left Factoring

* |f two rules for a non-terminal have right hand
sides that begin with the same symbol, we
can’t predict which one to use

* Formal solution: Factor the common prefix
into a separate production

UW CSE 401/M501 Autumn 2019 F-28

Left Factoring Example

* Original grammar
ifStmt ;= if (expr) stmt
| if (expr) stmt else stmt
* Factored grammar
ifStmt ::=if (expr) stmt ifTail
ifTail ::=else stmt | €

UW CSE 401/M501 Autumn 2019 F-29

Parsing if Statements

But it’s easiest to just // parse

code up the “else // if (expr) stmt [else stmt]

matches closest if” rule void ifStmt() { |

directly getNextToken(); // if
getNextToken(); //
expr();

(If you squint properly getNextToken(); //)

this is really just left stmt();

factoring where the two if (next symbol is ELSE) {

productions are parsed getNextToken(); // else

by a single routine) }Stmt()?

}

UW CSE 401/M501 Autumn 2019 F-30

Another Lookahead Problem

* Inlanguages like FORTRAN, parentheses are used for
both array subscripts and function calls

* A FORTRAN grammar includes something like
factor ::=id (subscripts) | id (arguments) | ...

 When the parser sees “id (”, how can it decide
whether this begins an array element reference or a
function call?

UW CSE 401/M501 Autumn 2019 F-31

Two Ways to Handle id (...)

e Use the type of id to decide

— Requires declare-before-use restriction if we want
to parse in 1 pass; also means parser needs
semantic information, not just grammar

* Use a covering grammar

factor ::=id (commaSeparatedList) | ...

and fix/check later when more information is
available (e.g., types)

UW CSE 401/M501 Autumn 2019 F-32

Top-Down Parsing Concluded

* Works with a smaller set of grammars than
bottom-up, but can be done for most sensible
programming language constructs

— Possibly with some grammar refactoring
* And maybe a little cheating (occasional extra lookahead, ...)

* |f you need to write a quick-n-dirty parser,
recursive descent is often the method of choice

— And some sophisticated hand-written parsers for real

languages (e.g., C++) are “based on” LL parsing, but
with lots of customizations

UW CSE 401/M501 Autumn 2019 F-33

Parsing Concluded

* That’s it!
* On to the rest of the compiler
* Coming attractions
— Intermediate representations (ASTs etc.)
— Semantic analysis (including type checking)

— Symbol tables
— & more...

UW CSE 401/M501 Autumn 2019 F-34

