CSE 401/M501 — Compilers

LR Parsing
Hal Perkins
Autumn 2019

UW CSE 401/M501 Autumn 2019

D-1

News: Notetaker needed

* DRS sent a note today asking for someone to help take
notes in class:

“Disability Resources for Students is looking for at least two
notetakers to assist a student with a documented disability. Please
consider notetaking as it will help your peer gain access to material
from class. Notetakers will receive a letter of recommendation for

their service from our office when the quarter is complete.

“If you take accurate and legible notes, please see me”

* (Presumably “me” = instructor. Let us know if you can help)

UW CSE 401/M501 Autumn 2019 D-2

Administrivia (added Mon. 10/7)

 Small bug in project demo scanner test program:
the expected/actual parameters are reversed in
one of the JUnit method calls

— See discussion board for more. Fix is simple and we
won’t attempt to push updated starter file to avoid
conflicts with any changes you’ve made by now.

* Still need notetaker(s) for class to help one of
your colleagues. Also need someone (same or
different) to do the same thing in section AC
(2:30) See instructor or contact DRS to help out.

UW CSE 401/M501 Autumn 2019 D-3

Agenda

* LR Parsing
 Table-driven Parsers
e Parser States

 Shift-Reduce and Reduce-Reduce conflicts

UW CSE 401/M501 Autumn 2019

D-4

Bottom-Up Parsing

* |dea: Read the input left to right

* Whenever we’ve matched the right hand side
of a production, reduce it to the appropriate
non-terminal and add that non-terminal to

the parse tree

 The upper edge of this partial parse tree is
known as the frontier

UW CSE 401/M501 Autumn 2019 D-5

Example

e Grammar
S ::= aABe
A:=Abc| b
B:=d

* Bottom-up Parse

a b b c d e

UW CSE 401/M501 Autumn 2019

D-6

LR(1) Parsing

 We’ll look at LR(1) parsers

— Left to right scan, Rightmost derivation, 1 symbol
lookahead

— Almost all practical programming languages have
an LR(1) grammar

— LALR(1), SLR(1), etc. — subsets of LR(1)

* LALR(1) can parse most real languages, tables are more
compact, and is used by YACC/Bison/CUP/etc.

UW CSE 401/M501 Autumn 2019 D-7

LR Parsing in Greek

* The bottom-up parser reconstructs a reverse
rightmost derivation

* Given the rightmost derivation
5 =>B1=>ﬁ2=>--'=>Bn—2=>ﬁn-1=>Bn =W

the parser will first discover B3, ,=>f,, , then B, ,=>B,.1,
etc.

* Parsing terminates when

— [, reduced to S (start symbol, success), or
— No match can be found (syntax error)

UW CSE 401/M501 Autumn 2019 D-8

How Do We Parse with This?

* Key: given what we’ve already seen and the next

input symbol (the lookahead), decide what to do.

 Choices:

— Perform a reduction
— Look ahead further

* Can reduce A=>[3 if both of these hold:

— A=>f is a valid production
— A=>[3is a step in this rightmost derivation

* This is known as a shift-reduce parser

UW CSE 401/M501 Autumn 2019

D-9

Sentential Forms

e If S=>* @, the string a is called a sentential form of
the grammar

* |n the derivation
5 =>B1=>B2=>°-°=>Bn-2=>Bn—1=>Bn =W
each of the [3; are sentential forms

* A sentential form in a rightmost derivation is called a
right-sentential form (similarly for leftmost and left-
sentential)

UW CSE 401/M501 Autumn 2019 D-10

Handles

* |Informally, a substring of the tree frontier that
matches the right side of a production that is
part of the rightmost derivation of the current
input string

— Even if A::=[} is a production, it is a handle only if it

matches the frontier at a point where A::=[3 was
used in this particular derivation

— [3 may appear in many other places in the frontier
without being a handle for that particular
production

* Bottom-up parsing is all about finding handles

UW CSE 401/M501 Autumn 2019 D-11

Handle Examples

* |In the derivation
S => aABe => aAde => aAbcde => abbcde

— abbcde is a right sentential form whose handle is
b at position 2

— aAbcde is a right sentential form whose handle is
Abc at position 4

 Note: some books take the left of the match as the
position

UW CSE 401/M501 Autumn 2019 D-12

Handles — The Dragon Book Defn.

* Formally, a handle of a right-sentential form vy
is a production A ::= 3 and a position iny
where 3 may be replaced by A to produce the
previous right-sentential form in the rightmost

derivation of y

UW CSE 401/M501 Autumn 2019 D-13

Implementing Shift-Reduce Parsers

* Key Data structures
— A stack holding the frontier of the tree
— A string with the remaining input

 We also need something to encode the rules
that tell us what action to take given the state
of the stack and the lookahead symbol

— Typically a table that encodes a finite automata

UW CSE 401/M501 Autumn 2019 D-14

Shift-Reduce Parser Operations

Reduce — if the top of the stack is the right
side of a handle A::=[3, pop the right side [3
and push the left side A

Shift — push the next input symbol onto the
stack

Accept —announce success
Error — syntax error discovered

UW CSE 401/M501 Autumn 2019

D-15

. S::=aAbe
Shift-Reduce Example 4= foc b
Stack Input Action

S abbcde$S shift

UW CSE 401/M501 Autumn 2019 D-16

How Do We Automate This?

* Cannot use clairvoyance in a real parser (alas...)

* Defn. Viable prefix — a prefix of a right-sentential
form that can appear on the stack of the shift-reduce
parser

— Equivalent: a prefix of a right-sentential form that does not
continue past the rightmost handle of that sentential form

— In Greek: vy is a viable prefix of G if there is some derivation
S=>* oaAw =>_ apw andyis a prefix of af3.

— The occurrence of B in aw is the right side of a handle of
ofw

UW CSE 401/M501 Autumn 2019 D-17

How Do We Automate This?

* Fact: the set of viable prefixes of a CFG is a
regular language(!)

* |dea: Construct a DFA to recognize viable prefixes
given the stack and remaining input

— Perform reductions when we recognize them

UW CSE 401/M501 Autumn 2019 D-18

UW CSE 401/M501 Autumn 2019 D-19

Trace

Stack

Input
abbcdeS

accept

sta rt

S

= aAPRe
A::=Abc| b

UW CSE 401/M501 Autumn 2019

D-20

Observations

* Way too much backtracking

— We want the parser to run in time proportional to
the length of the input

* Where the heck did this DFA come from
anyway?
— From the underlying grammar
— We’ll defer construction details for now

UW CSE 401/M501 Autumn 2019 D-21

Avoiding DFA Rescanning

* Observation: no need to restart DFA after a shift.
Stay in the same state and process next token.

 Observation: after a reduction, the contents of the
stack are the same as before except for the new non-
terminal on top

— .. Scanning the stack will take us through the same
transitions as before until the last one

— .. If we record state numbers on the stack, we can go
directly to the appropriate state when we pop the right
hand side of a production from the stack

UW CSE 401/M501 Autumn 2019 D-22

Stack

* Change the stack to contain pairs of states and
symbols from the grammar

SSo Xy 51 %, S, ... X, 'S,
— State s, is the start state

— When we push a symbol on the stack, push the
symbol plus the new FA state we reach

— When we reduce, popping the handle will reveal the
state of the FA just prior to reading the handle

* Observation: in an actual parser, only the state numbers need to be pushed,
since they implicitly contain the symbol information, but for explanations /
examples it can help to show both.

UW CSE 401/M501 Autumn 2019 D-23

Encoding the DFA in a Table

* A shift-reduce parser’s DFA can be encoded in
two tables

— One row for each state

— action table encodes what to do given the current
state and the next input symbol

— goto table encodes the transitions to take after a
reduction

UW CSE 401/M501 Autumn 2019 D-24

Actions (1)

* Given the current state and input symbol, the
main possible actions are

— si — shift the input symbol and state j onto the
stack (i.e., shift and move to state i)

— rj — reduce using grammar production j

* The production number tells us how many
<symbol, state> pairs to pop off the stack
(= number of symbols on rhs of production)

e Each production needs a unique number, i.e., A::=a | B
needs to be splitinto A::=aand A ::=f3

UW CSE 401/M501 Autumn 2019 D-25

Actions (2)

 Other possible action table entries
— accept
— blank — no transition — syntax error

* A LR parser will detect an error as soon as possible on a
left-to-right scan

* A real compiler needs to produce an error message,
recover, and continue parsing when this happens

UW CSE 401/M501 Autumn 2019 D-26

Goto

* When a reduction is performed using A ::= (3,
we pop |B| <symbol, state> pairs from the
stack revealing a state uncovered s on the top
of the stack

* goto[uncovered s, A] is the new state to push
on the stack when reducing production A ::= 3
(after popping handle B and pushing A)

UW CSE 401/M501 Autumn 2019 D-27

Aside: Extra Initial Production

* When we construct the DFA we’ll need to add
a new production to handle end-of-file (i.e.,
end-of-input) correctly

* |[f Sis the start state of the original grammar,
add an initial production &’ ::=SS
— S represents end-of-file (input)

— Accept when we’ve reduced the input to S and
there is no more input (i.e., lookahead is S)

UW CSE 401/M501 Autumn 2019 D-28

0. §'::=5%
. 1. S::=aAB
Reminder: DFA for 2. A= Abc
3. A::=D
4, B::=d

UW CSE 401/M501 Autumn 2019 D-29

0. $'::=5%
1. S$::=aAke
LR Parse Table for 2. A:=anc
3. A=
4. B::=d
action goto
State
a b C d e $ A B S
0 acc
1 S2 g0
2 s4 g3
3 S6 s5 g8
4 r3 r3 r3 r3 r3 r3
5 r4 r4 r4 r4 r4 r4
6 s/
7/ r2 r2 r2 r2 r2 r2
8 s9
9 rl rl ri ri rl ri

UW CSE 401/M501 Autumn 2019 D-30

LR Parsing Algorithm (1)

word = scanner.getToken(); } else if (action[s, word] = accept) {
while (true) { return;
s = top of stack; 1 else {
if (action[s, word] =si) { // no entry in action table
push word; push i (state); report syntax error;
word = scanner.getToken(); halt or attempt recovery;
} else if (action[s, word] =) { }

pop 2 * length of right side of
productionj (2*|B]);
uncovered_s = top of stack;

push left side A of production;
push state goto[uncovered_s, A];

UW CSE 401/M501 Autumn 2019 D-31

Example

Stack
S

0. §
1. S::= aABe
2. A::= Abc
3. A::=Db
4, B::=
Input
action goto
abbcdeS S
a b ¢ d e $|A B S
0 ac
1 |s2 g0
2 s4 g3
3 S6 s5 g8
4 1r3 r3 r3 r3 r3 r3
514 4 M4 4 r4 r4
6 s/
7 1r2 r2 r2 r2 r2 r2
8 s9
9 1rl r1 r1 r1 r1 ri
UW CSE 401/M501 Autumn 2019 D-32

LR States

 |dea is that each state encodes

— The set of all possible productions that we could
be looking at, given the current state of the parse,
and

— Where we are in the right hand side of each of
those productions

UW CSE 401/M501 Autumn 2019 D-33

ltems

* Anitemis a production with a dot in the right
hand side

e Example: Items for production A ::= XY
A:=. XY
A:=X.Y
A:=XY.
* |dea: The dot represents a position in the
production

UW CSE 401/M501 Autumn 2019 D-34

B =
accept
A S:.:=aA. B
" A::= A.bc
B::=.d
@ d
B::=d

o S::= aABe.

UW CSE 401/M501 Autumn 2019

D-35

Problems with Grammars

* Grammars can cause problems when
constructing a LR parser

— Shift-reduce conflicts
— Reduce-reduce conflicts

UW CSE 401/M501 Autumn 2019 D-36

Shift-Reduce Conflicts

* Situation: both a shift and a reduce are
possible at a given point in the parse
(equivalently: in a particular state of the DFA)

* Classic example: if-else statement
S ::=ifthenS | ifthenSelse S

UW CSE 401/M501 Autumn 2019 D-37

Parser States for 1. Su=ifthen S
2. S::=ifthen Selse §

e State 3 has a shift-

S::=.ifthen S :
@ S::=.ifthen Selse S reduce conflict
ifthenl — Can shift past else into
@ S:u=ifthen. S state 4 (s4)
S::=ifthen. Selse § — Can reduce (rl)
51 S ::=ifthen S
@ S::=ifthen S.
S::=ifthen S. else S
else l (Note: other S ::=. ifthen items
not included in states 2-4 to save
@ S::=ifthen Selse . S space)

UW CSE 401/M501 Autumn 2019 D-38

Solving Shift-Reduce Conflicts

* Fix the grammar

— Done in Java reference grammar, others

* Use a parse tool with a “longest match” rule —
i.e., if there is a conflict, choose to shift
instead of reduce
— Does exactly what we want for if-else case

— Guideline: a few shift-reduce conflicts are fine, but
be sure they do what you want (and that this
behavior is guaranteed by the tool specification)

UW CSE 401/M501 Autumn 2019 D-39

Reduce-Reduce Conflicts

e Situation: two different reductions are
possible in a given state

* Contrived example
S:=A
S::=8B

A =X
B::=x

UW CSE 401/M501 Autumn 2019 D-40

1. S::=A
Parser States for 2. Su=B
3. A:i=X
4, B:i=X
@® g: :g State 2 has a reduce-
A= X reduce conflict (r3, r4)
B::= X
X
@ A= X
B::= X

UW CSE 401/M501 Autumn 2019 D-41

Handling Reduce-Reduce Conflicts

* These normally indicate a serious problem
with the grammar.

e Fixes

— Use a different kind of parser generator that takes
lookahead information into account when
constructing the states

* Most practical tools use this information
— Fix the grammar

UW CSE 401/M501 Autumn 2019 D-42

Another Reduce-Reduce Conflict

* Suppose the grammar tries to separate
arithmetic and boolean expressions
expr ::= aexp | bexp
aexp ::= aexp * aident | aident
bexp ::= bexp && bident | bident
aident ::= id
bident ::= id
* This will create a reduce-reduce conflict

UW CSE 401/M501 Autumn 2019 D-43

Covering Grammars

* A solution is to merge aident and bident into a single

non-terminal (or use id in place of aident and bident
everywhere they appear)

* This is a covering grammar

— Will generate some programs that are not generated by
the original grammar

— Use the type checker or other static semantic analysis to
weed out illegal programs later

UW CSE 401/M501 Autumn 2019 D-44

Coming Attractions

* Constructing LR tables

— We’'ll present a simple version (SLR(0)) in lecture,
then talk about extending it to LR(1) and then a
little bit about how this relates to LALR(1) used in
most parser generators

* LL parsers and recursive descent

* Continue reading ch. 3

UW CSE 401/M501 Autumn 2019 D-45

