
CSE 401/M501 – Compilers

Overview and Administrivia
Hal Perkins

Autumn 2019

UW CSE 401/M501 Autumn 2019 A-1

Agenda

• Introductions
• Administrivia
• What’s a compiler?
• Why you want to take this course

UW CSE 401/M501 Autumn 2019 A-2

Who: Course staff

• Instructor: Hal Perkins: UW faculty for a while;
CSE 401 veteran (+ other compiler courses)

• TAs: Aaron Johnston, Miya Natsuhara, Kory
Watson, and Sam Wolfson

– With consulting help from Fatemeh Ghezloo
(CSEP501 TA)

• Get to know us – we’re here to help you succeed!

• Office hours start next week. Watch for schedule
on the course web

UW CSE 401/M501 Autumn 2019 A-3

Credits

• Some direct ancestors of this course:
– UW CSE 401 (Chambers, Snyder, Notkin, Perkins,

Ringenburg, Henry, …)

– UW CSE PMP 582/501 (Perkins)

– Rice CS 412 (Cooper, Kennedy, Torczon)

– Cornell CS 412-3 (Teitelbaum, Perkins)

– Many books (Appel; Cooper/Torczon; Aho, [[Lam,]
Sethi,] Ullman [Dragon Book]; Fischer, [Cytron ,]
LeBlanc; Muchnick, …)

• Won’t attempt to attribute everything – and
some of the details are lost in the haze of time

UW CSE 401/M501 Autumn 2019 A-4

CSE M 501

• Enhanced version for 5th-year Master’s students.

• M501 students will have to do a significant
addition to the project, or some other extra work
if agreed with instructor (papers, reports, ???)
– More details later

• Otherwise 401 and M501 are the same (lectures,
sections, assignments, infrastructure, …)

UW CSE 401/M501 Autumn 2019 A-5

So whadda ya know?

• Official prerequisites:

– CSE 332 (data abstractions)

• and therefore CSE 311 (Foundations)

– CSE 351 (hardware/software interface, x86_64)

• Also useful, but not required:

– CSE 331 (software design & implementation)

– CSE 341 (programming languages)

–Who’s taken these?

UW CSE 401/M501 Autumn 2019 A-6

Lectures & Sections
• Both required

• All material posted, but they are visual aids
– Arrive punctually and pay attention (& take notes!)
– If doing so doesn’t save you time, one of us is messing up! Let

us know so we can try to fix.

• Sections: additional examples and exercises plus project
details and tools
– This week (tomorrow!): start regexps/scanners – no reason to

wait until Friday! Be there!!
– AA, AB sections in SAV 131 (AA moved), AC still in SIG 228 but

might move next week – check time roster before class to be
sure

UW CSE 401/M501 Autumn 2019 A-7

Staying in touch

• Course web site
• Discussion board –new this quarter: ed!
– You will get login credentials sent to your UW email

later today
– For anything related to the course
– Join in! Help each other out. Staff will contribute.

• Mailing list
– You are automatically subscribed if you are registered
– Will keep this fairly low-volume; limited to

announcements or things that everyone must read

UW CSE 401/M501 Autumn 2019 A-8

Requirements & Grading

• Roughly
– 50% project, done with a partner
– 15% individual written homework
– 15% midterm exam
– 20% final exam
We reserve the right to adjust as needed

UW CSE 401/M501 Autumn 2019 A-9

Academic Integrity
• We want a collegial group helping each other succeed!
• But: you must never misrepresent work done by

someone else as your own, without proper credit if
appropriate, or assist others to do the same

• Read the course policy carefully
• We trust you to behave ethically
– I have little sympathy for violations of that trust
– Honest work is the most important feature of a university

(or engineering or business or life). Anything less
disrespects your instructor, your colleagues, and yourself

UW CSE 401/M501 Autumn 2019 A-10

Course Project

• Best way to learn about compilers is to build one!
• Course project
– MiniJava compiler: classes, objects, etc.

• Core parts of Java – essentials only
• Originally from Appel textbook (but you don’t need that)

– Generate executable x86-64 code & run it
– Completed in steps through the quarter

• Where you wind up at the end is the most important part,
but there are intermediate milestones to keep you on
schedule and provide feedback at important points

– Additional work for CSE M 501 students – details later

UW CSE 401/M501 Autumn 2019 A-11

Project Groups

• You should work in pairs
– Pick a partner now to work with throughout quarter –

we need this info by early next week
– If you are in CSE M 501 you should pair up with

someone else in that group

• We’ll provide accounts on department gitlab
server for groups to store and synchronize their
work & we’ll get files from there for grading /
feedback
– Anybody new to CSE Gitlab/Git?

UW CSE 401/M501 Autumn 2019 A-12

Books

• Four good books; will be on reserve in the

engineering library:

– Cooper & Torczon, Engineering a Compiler.
“Official text” & we’ll take some assignments

from here

– Appel, Modern Compiler Implementation in
Java, 2nd ed. MiniJava is from here.

– Aho, Lam, Sethi, Ullman, “Dragon Book”

– Fischer, Cytron, LeBlanc, Crafting a Compiler

UW CSE 401/M501 Autumn 2019 A-13

Gadgets
• Gadgets reduce focus and learning
– Bursts of info (e.g. emails, IMs, etc.) are addictive
– Heavy multitaskers have more trouble focusing and

shutting out irrelevant information
• http://www.npr.org/2016/04/17/474525392/attention-students-

put-your-laptops-away
– Seriously, you will learn more if you use paper instead!!!

• So how should we deal with laptops/phones/etc.?
– Just say no!
– No open gadgets during class (really!)
– Urge to search? – ask a question! Everyone benefits!!
– You may close/turn off your electronic devices now
– Pull out a piece of paper and pen/pencil instead J

UW CSE 401/M501 Autumn 2019 A-14

http://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away

And the point is…

• How do we execute something like this?
int nPos = 0;
int k = 0;
while (k < length) {

if (a[k] > 0) {
nPos++;

}
}

• The computer only knows 1’s & 0’s: encodings
of instructions and data

UW CSE 401/M501 Autumn 2019 A-15

Structure of a Compiler

• At a high level, a compiler has two pieces:
– Front end: analysis
• Read source program and discover its structure and

meaning
– Back end: synthesis
• Generate equivalent target language program

UW CSE 401/M501 Autumn 2019 A-16

Source TargetFront End Back End

Compiler must…

• Recognize legal programs (& complain about illegal
ones)

• Generate correct code
– Compiler can attempt to improve (“optimize”) code, but

must not change behavior (meaning)
• Manage runtime storage of all variables/data
• Agree with OS & linker on target format

UW CSE 401/M501 Autumn 2019 A-17

Source TargetFront End Back End

Implications

• Phases communicate using some sort of
Intermediate Representation(s) (IR)
– Front end maps source into IR
– Back end maps IR to target machine code
– Often multiple IRs – higher level at first, lower level in later

phases

UW CSE 401/M501 Autumn 2019 A-18

Source TargetFront End Back End

Front End

• Usually split into two parts
– Scanner: Responsible for converting character stream to

token stream: keywords, operators, variables, constants, …
• Also: strips out white space, comments

– Parser: Reads token stream; generates IR
• Either here or shortly after, perform semantics analysis to check

for things like type errors, etc.

• Both of these can be generated automatically
– Use a formal grammar to specify the source language
– Tools read the grammar and generate scanner & parser

(lex/yacc or flex/bison for C/C++, JFlex/CUP for Java)

UW CSE 401/M501 Autumn 2019 A-19

Scanner Parsersource tokens IR

Scanner Example

• Input text

// this statement does very little
if (x >= y) y = 42;

• Token Stream

– Notes: tokens are atomic items, not character strings;

comments & whitespace are not tokens (in most languages –

counterexamples: Python indenting, Ruby and JavaScript newlines)

• Token objects sometimes carry associated data (e.g., numeric

value, variable name)

UW CSE 401/M501 Autumn 2019 A-20

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

Parser Output (IR)
• Given token stream from scanner, the parser

must produce output that captures the meaning
of the program

• Most common parser output is an abstract syntax
tree (AST)
– Essential meaning of program without syntactic noise
– Nodes are operations, children are operands

• Many different forms
– Engineering tradeoffs change over time
– Tradeoffs (and IRs) can also vary between different

phases of a single compiler

UW CSE 401/M501 Autumn 2019 A-21

Scanner/Parser Example

• Token Stream • Abstract Syntax Tree

UW CSE 401/M501 Autumn 2019 A-22

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Original source program:
// this statement does very little
if (x >= y) y = 42;

Static Semantic Analysis
• During or (usually) after parsing, check that the

program is legal and collect info for the back end
– Type checking
– Verify language requirements like proper declarations,

etc.
– Preliminary resource allocation
– Collect other information needed by back end analysis

and code generation
• Key data structure: Symbol Table(s)
– Maps names -> meaning/types/details

UW CSE 401/M501 Autumn 2019 A-23

Back End

• Responsibilities
– Translate IR into target code
– Should produce “good” code
• “good” = fast, compact, low power (pick some)

– Should use machine resources effectively
• Registers
• Instructions
• Memory hierarchy

UW CSE 401/M501 Autumn 2019 A-24

Back End Structure

• Typically two major parts
– “Optimization” – code improvement – change correct

code into semantically equivalent “better” code
• Examples: common subexpression elimination, constant

folding, code motion (move invariant computations outside of
loops), function inlining (replace call with body of function)

• Optimization phases often interleaved with analysis
– Target Code Generation (machine specific)

• Instruction selection & scheduling, register allocation
• Usually walk the AST and generate lower-level intermediate

code before optimization

UW CSE 401/M501 Autumn 2019 A-25

The Result

• Input
if (x >= y)

y = 42;

• Output

movl 16(%rbp),%edx
movl -8(%rbp),%eax
cmpl %eax, %edx
jl L17
movl $42, -8(%rbp)

L17:

UW CSE 401/M501 Autumn 2019 A-26

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Why Study Compilers? (1)

• Become a better programmer(!)
– Insight into interaction between languages, compilers,

and hardware
– Understanding of implementation techniques, how

code maps to hardware
– Better intuition about what your code does
– Understanding how compilers optimize code helps

you write code that is easier to optimize
• And avoid wasting time doing “optimizations” that the

compiler will do better, and avoid “clever” code that
confuses the compiler and makes thing worse

UW CSE 401/M501 Autumn 2019 A-34

Why Study Compilers? (2)

• Compiler techniques are everywhere

– Parsing (“little” languages, program input, scripts,…)

– Software tools (verifiers, checkers, …)

– Database engines, query languages

– Domain-specific languages

– Text processing

• Tex/LaTex -> dvi -> Postscript -> pdf

– Hardware: VHDL; model-checking tools

– Mathematics (Mathematica, Matlab, SAGE)

UW CSE 401/M501 Autumn 2019 A-35

Why Study Compilers? (3)

• Fascinating blend of theory and engineering
– Lots of beautiful theory around compilers

• Parsing, scanning, static analysis
– Interesting engineering challenges and tradeoffs,

particularly in optimization (code improvement)
• Ordering of optimization phases
• What works for some programs can be bad for others

– Plus some very difficult problems (NP-hard or worse)
• E.g., register allocation is equivalent to graph coloring
• Need to come up with “good enough” approximations /

heuristics

UW CSE 401/M501 Autumn 2019 A-36

Why Study Compilers? (4)
• Draws ideas from many parts of CSE
– AI: Greedy algorithms, heuristic search
– Algorithms: graphs, dynamic programming, approximation
– Theory: Grammars, DFAs and PDAs, pattern matching,

fixed-point algorithms
– Systems: Allocation & naming, synchronization, locality
– Architecture: pipelines, instruction set use, memory

hierarchy management, locality

UW CSE 401/M501 Autumn 2019 A-37

Why Study Compilers? (5)

• You might even write a compiler some day!

• You will write parsers and interpreters for little

languages, if not bigger things

– Command languages, configuration files, XML,

JSON, network protocols, …

• And if you like working with compilers and are

good at it there are many jobs available…

UW CSE 401/M501 Autumn 2019 A-38

Any questions?

• Your job is to ask questions to be sure you
understand what’s happening and to slow me
down
– Otherwise, I’ll barrel on ahead J

UW CSE 401/M501 Autumn 2019 A-44

Coming Attractions

• Quick review of formal grammars
• Lexical analysis – scanning & regular

expressions – starts in sections tomorrow!
– Background for first part of the project
– All sections in SAV 131 (but check time schedule…)

• Followed by parsing …

• Start reading: ch. 1, 2.1-2.4

UW CSE 401/M501 Autumn 2019 A-45

Before next time…
• If you are trying to add the class please watch for

an opening and grab one when it shows up
– Go to any section tomorrow

• Familiarize yourself with the course web site

• Read syllabus and academic integrity policy

• Find a partner!
– And meet other people in the class too!! J

UW CSE 401/M501 Autumn 2019 A-46

