Question 1. (14 points) Runtime data structures. Suppose we have the following three Java classes:

public class Marsupial {
int weight;

public void eat() { ... }
public void speak() { --- }

}

public class Wombat extends Marsupial {
boolean happy;

int age;

public void playQ { --- }
public void sleepO { --- }
public void speak() { ... }

}

public class Main {
public static void main(String[] ignored) {
Marsupial fred = new Marsupial();
Marsupial matilda = new Wombat();
Wombat mate = new Wombat();

fred.eat();
matilda.speak();
mate.play();

}
}

On the next page draw a diagram of the runtime data structures for this program after the declarations
in the Main method have been processed, as follows:

(a) Draw pictures showing the variables in the program, the objects they refer to, and how the objects
and their data members would be organized and laid out in memory.

(b) Add to your diagram from part (a) any mechanisms that support dynamic method binding as in Java
(e.g., vtables). You may assume that this class structure is fixed at compile time and no new classes or
methods will be added at runtime. You may also ignore constructors.

(You may remove this page from the exam if that is convenient.)

CSE 401 Final, March 17, 2010 Sample Solution Page 1 of 11

Question 1 (cont). Draw your diagram for question 1 below.

w

matilda E\

mate E\

Marsupial

vtable

weight

Wombat

Marsupial vtable

parent

eat —

speak —

vtable

AN

weight

happy

age

Wombat

Wombat vtable

parent

eat

vtable

speak

weight

play

=

happy

VAVAN

sleep

age

/MarsupiaISeat «——

| » MarsupialSspeak

WombatSspeak
WombatSplay

WombatSsleep

Notes: There is some freedom of the order of fields in the objects and vtables. But the first fields in

Wombat objects must match the fields in Marsupial objects, and the order of methods in the

Marsupial vtable must match the order of the methods in the beginning of the Wombat vtable

exactly.

CSE 401 Final, March 17, 2010

Sample Solution

Page 2 of 11

A few short questions on optimizations.

Question 2. (6 points) The new optimizing compiler we’ve been working on is designed to move
computations outside a loop if they always produce the same value. Given the following original code,

for (i = 0; 1 < nj; I++)
a[i] = sqrt(x/y);

the optimizer rewrites it as follows to avoid recalculating the value inside the loop. (sqrtis a library
function; it always will return the same result given the same input value and it has no side effects. All
values are doubles.)

temp = sqrt(xX/y);
for (i = 0; 1 < nj I++)
a[i] = temp;

Assuming that we are running this code on a single processor with no concurrency, is this optimization
always safe and correct? Give a brief argument why or why not.

No. The trouble is that sqrt(x/y) is always evaluated in the optimized version, but is not evaluated in
the original version if n < 0. Evaluation of sqrt(x/y) can potentially generate a division by 0 error or
can produce an error if x/y < 0, and that should not happen if the loop is not executed.

The optimization would be safe if we guarded the assignment to temp by doing something like this:

if (n > 0) temp = sqrt(x/y);

Question 3. (6 points) All optimizing compilers perform dead code elimination, which eliminates code
that is never executed, or which computes values that are never used. Most optimizing compilers
perform dead code elimination several times during the optimization passes. Why? Why is there any
advantage to doing it more than once?

Optimizations may themselves generate dead code by eliminating the need for various intermediate
computations. So even after we run dead code elimination once it may be profitable to run it again

later. Further even if we run it again later, it is worth doing it early since it is cheap and reduces the

amount of intermediate code that later parts of the compiler need to deal with.

CSE 401 Final, March 17, 2010 Sample Solution Page 3 of 11

Question 4. (10 points) Suppose we have the code sequence shown on the left. The variables are
assumed to be static, global variables.

if(a+b<0){ temp = a + b;
X = a + b; if (temp <0) {
} else { X = temp;
y = a + b; } else {
3 y = temp;
}

An optimization that would reduce the size of the generated code is shown on the right, where the value
a+b is computed once and stored in a temporary variable, then used when it is needed later.

[The question should have included an explicit mention that temp was a compiler temporary or
register and not visible to other threads. That is implicit in most of these kinds of examples, but did
cause a bit of confusion in a couple of cases. We took that into account when grading the question.]

(a) Is this optimization always legal (i.e., safe and correct) if the code is executed in a single thread with
no other concurrent threads? Give a brief argument in support of your answer.

Yes. The result of evaluating a+b will be the same if it is re-evaluated.

(b) Is this optimization always legal (i.e., safe and correct) if the code is executed in one thread of a
multi-threaded program? Give a brief argument in support of your answer.

No. If a and b are global then another thread can change their values at any time. So, in the original
case, a+b may have a different value the second time it is evaluated. In the optimized version, a+b is
only evaluated once and changes between the original evaluation and the assignment would be
missed.

CSE 401 Final, March 17, 2010 Sample Solution Page 4 of 11

Question 5. (20 points) x86 hacking. Consider the following C function that returns the sum of a

sequence of numbers recursively.

/* return the sum k + (k+1) + (k+2) + ... n */
int sum(int k, int n) {
int ans;
if (k==n) {
ans = n;
} else {

ans k + sum(k+1, n);

}

return ans;

(a) (6 points) In the space below draw a picture of the stack frame for function sum right before
executing the return statement at the end of the function. Your picture should show where the
parameters and variables are located, as well as any additional items that are part of the stack frame,
such as the return address. You should also draw labeled arrows showing where in the stack frame the
registers ebp (frame pointer) and esp (stack pointer) point, and indicate the numeric offset of each

parameter and local variable from the frame pointer ebp.

High addresses

(space belonging to calling function)

n (+12)

k (+8)

return address

ebp old ebp

esp ans (-4)

(continued next page)

CSE 401 Final, March 17, 2010 Sample Solution Page 5 of 11

Question 5. (cont) (b) (14 points) Translate the sum function into x86 assembly language. Your code

does not need to look like the code generated by your compiler — any clean x86 code will do. However,

your code must conform to the standard x86 C language calling conventions. Further, your code must

include all of the statements in the original function, including the assignments to the local variable ans

and the recursive function call. You may use either the Intel or GNU assembler syntax for your code —

just be sure to pick one and not mix them. Note: The standard conventions require that registers ebx,

esi, edi, ebp, and esp must be saved and restored if they are used in the body of a function. Code

repeated for reference, but reformatted to save space:

/* return the sum k + (k+1) + (k+2) + ... + n */

int sum(int Kk,
int ans;
if (k ==

}

int n) {

n) { ans = n; } else { ans = k + sum(k+1, n); }
return ans;

;> answer using intel syntax

sum: push
mov
sub
mov
mov
cmp
jne
mov
Jmp

else: mov
push
mov
inc
push
call
add
add
mov

exit: mov
mov
pop
ret

ebp

ebp,esp
esp,4

eax, [ebp+12]
edx, [ebp+8]
eax,edx
else
[ebp-4],eax
exit

eax, [ebp+12]
eax

eax, [ebp+8]
eax

eax

sum

esp,8

eax, [ebp+8]
[ebp-4],eax
eax, [ebp-4]
esp,ebp

ebp

prologue

frame with space for ans
eax = n
edx = k

Jump 1if n 1= k
ans = n

return

call sum(k+1,n)
push n

push k+1

recursive call — result In eax
pop arguments

add k to result

store ans

return ans in eax

standard return

There are obviously many possible solutions to this question. The above is fairly straightforward

code, and definitely not the most compact possible.

Although the instructions said to include all of the original code in the solution, many people used eax

to hold variable ans without storing it in the stack frame. We let that go when grading.

CSE 401 Final, March 17, 2010

Sample Solution

Page 6 of 11

Question 6. (32 points) Compiler hacking: the question of many parts.

Most programming languages have loops that either test the loop condition before the loop body
executes (while, for) or after (do-whi le). But often it would be very convenient to have a loop
with a test in the middle. An example is when reading an input file that is terminated with an end
marker in the data. This is easy to express if we have a loop that looks like this (pseudo-code, not
necessarily real MiniJava):

loop
read(value)

while (value != eof-marker)
process(value)

repeat

We'd like to add such a loop to our MiniJava compiler. The syntax of the loop statement is:
loop statementl while (condition) statement2 repeat

(Aside: We ignore the question of whether there should be a semicolon following repeat — for the
sake of this question, assume there is no semicolon.)

The meaning is as expected from the example. First, statement1 is executed. Then the condition is
evaluated. If itis false, execution of the loop statement terminates, and control continues with
whatever follows the keyword repeat. If condition is true, statement2 is executed, then we loop back
to the top and execute statement1 again to begin the next iteration.

Answer the rest of this question on the next few pages. You can remove this page and the following
one, which contains the MinilJava grammar, and use those for reference as you work on the question.

Also, for reference, remember that the AST package in Minilava contains the following key classes.

abstract ASTNode
abstract Exp extends ASTNode
abstract Statement extends ASTNode

Specific classes in the AST have constructors like While(Exp cond, Statement body, int line_nbr), and
contain suitable instance variables to hold references to appropriate subtrees in the AST.

(continued next page)

CSE 401 Final, March 17, 2010 Sample Solution Page 7 of 11

Question 6 (cont.) (a) (3 points) What new tokens would need to be added to the scanner and parser
of our MiniJava compiler to add the new 10o0p statement to the original MiniJava grammar? Just list
the tokens; you don’t need to give a JFlex or CUP specification for them.

LOOP REPEAT

(b) (7 points) Complete the following class to define a new AST node class for the 1oop statement. You
only need to define instance variables and the constructor. Assume that all appropriate package and
import declarations are supplied, and don’t worry about visitor code.

public class Loop extends Statement {
// add instance variables below

Statement stmtl, stmt2;

Exp cond;

// constructor — add parameters and body

public Loop(Exp e, Statement sl1l, Statement s2, int line nbr) {

super(line_nbr);
cond = e;
stmtl = si;

stmt2

S2;

CSE 401 Final, March 17, 2010 Sample Solution Page 8 of 11

Question 6 (cont.) (c) (7 points) Complete the CUP specification below to define a new production for
the loop statement and the associated semantic action(s) needed to parse a loop and insert an
appropriate Loop node (as defined in part (b)) into the AST. We have added the necessary additional
code to the parser rule for Statement as shown below.

Statement ::
| LoopStatement:s {: RESULT = s; :}

LoopStatement ::=
LOOP Statement:sl WHILE LPAREN Exp:e RPAREN

Statement:s2 REPEAT

{: RESULT = new Loop(e,sl,s2,slleft); :}

(d) (5 points) Describe the checks that would be needed in the semantics/type-checking part of the
compiler to verify that a loop statement was legal. You do not need to give code for a visitor method
or anything like that — just describe what rules (if any) need to be checked.

Verify that the condition expression has type Boolean

CSE 401 Final, March 17, 2010 Sample Solution Page 9 of 11

Question 6 (cont.) (e) (10 points) Describe the code that would be generated for the new loop. You
need to show the instructions, labels, and any other assembly language code that need to be generated
for the loop statement itself, and show where the generated code for statement1, statement2, and the
condition would appear in the code sequence for loop. In writing your code, you should assume that
the compiled code for condition will leave the value 1 in eax during execution if the condition evaluates
to true, and will leave a 0 in eaX if it evaluates to false. Use that value to control whether the loop
continues or not; don’t use any fancier branching scheme.

Many people included a great deal of detail here, but answers were ok as long as they included the
labels, branches, and other code for the loop itself and showed where the nested statements and
expressions would be included.

loop_label:
statement1 code
condition code
cmp eax,0
je loop_exit
statement2 code
jmp loop_label

loop_exit:

CSE 401 Final, March 17, 2010 Sample Solution Page 10 of 11

Question 7. (12 points) A little coloring. Considering the following code fragment:

a

read();
b = read();
C a+b;
if (c > 9) {
d = b+c;
} else {
d = c+1;
}
print(d);

(a) Draw the control flow graph for the code, keeping the diagram to the left side of the paper.

a = read(); a
read();

cC =a+ b;

(@3
I

c >0

print(d);

(b) To the right of the control flow graph, neatly show the live ranges of the variables.
(c) Below, draw the interference graph for the variables. Use the left side of the paper.
a b Need two registers. One possibility:
rl={a, c, d}

c d r2={b}

(d) To the right of the interference graph, indicate which groups of variables can occupy the same
register, based on the information in the interference graph. You do not need to go through the steps of
the graph coloring algorithm explicitly, although it may be helpful as a guide to assigning registers. If
there is more than one possible answer that uses the minimum number of registers, any of them will be
fine.

CSE 401 Final, March 17, 2010 Sample Solution Page 11 of 11

