
 CSE 401/M501 18sp Midterm Exam 5/2/18 Sample Solution

 Page 1 of 8

Question 1. (14 points) Regular expressions. We would like to process strings that
represent simple polynomials. A polynomial is the sum of a sequence of one or more
terms, and each term consists of a positive coefficient, the variable x, and an exponent.
There is a ^ character between each x and the corresponding exponent. The last term
(only) in a polynomial can be a coefficient without the variable x and its exponent. Some
examples:

2x^17+3x^2+42 1x^1+5x^3 2x^2+3x^1+1x^2+5 17

Simplifications and restrictions:

• Polynomials have at least one term (i.e., are not an empty string).
• The only variable in these polynomials is the single letter x.
• Coefficients and exponents are strings of decimal digits 0 through 9 that do not

start with a 0, i.e., all coefficients and exponents are non-zero positive integers
with no leading 0s.

• The last term (only) can be a coefficient (integer) by itself. All other terms must
have an x and an exponent.

• Exponent values may appear in any order and may be repeated in different terms
in the same polynomial (i.e., 2x^2+5x^3+1x^2 is legal).

• Coefficients may not be omitted (i.e., x^2 is not legal, 1x^2 is)
• If x appears, it must have an exponent.
• There are no negative coefficients or exponents, and no - operator.
• There is no whitespace (blanks, tabs, etc.) in a polynomial string.

Some strings that are not polynomials according to these rules:

x^2 (no coefficient); 3x (no exponent); 17+1x^2 (only last term can be an integer without
a x^… following); 3x^0, 3x^01, 0, 03x^2, 3x^5+017 (leading 0s not allowed), 2^3 (no x).

As with homework problems, you must restrict yourself to the basic regular expression
operations covered in class and on homework assignments: r s, r | s, r*, r+, r?, character
classes like [a-cxy] and [^aeiou], abbreviations name=regexp, and parenthesized regular
expressions. No additional operations that might be found in the “regexp” packages in
various Unix programs, scanner generators like JFlex, or language libraries are allowed.

Write your ….

 answers on ….

 the next page.

Remove this page from the exam and do not include it when you hand in your exam.
It will not be scanned or graded.

 CSE 401/M501 18sp Midterm Exam 5/2/18 Sample Solution

 Page 2 of 8

Question 1. Write your answers here. Hint: it may be useful to work on the regular
expression and the DFA parts simultaneously.

(a) (7 points) Give a regular expression (or collection of regular expressions) that
generates all valid polynomials according to the above rules.

<int> = [1-9][0-9]*

<term> = <int>x^<int>

<polynomial> = <int> | <term> (+ <term>)* (+ <int>)?

Another way to write the last line that also works is:

<polynomial> = (<term> +)* <int> | (<term> +)* <term>

Of course, any other correct solution also received full credit.

(b) (7 points) Draw a DFA that accepts all valid polynomials according to the above
rules.

[1-9]

[0-9]

x

^

[1-9]

[0-9]

+

 CSE 401/M501 18sp Midterm Exam 5/2/18 Sample Solution

 Page 3 of 8

Question 2. (10 points) Scanners and tokens. To see what would happen, we ran our
MiniJava scanner using a file containing the following Ruby code fragment as input:

if a <= 1 do
 data = {:while} // to return
end

Below, list in order the tokens that would be returned by a scanner for MiniJava as it
reads this input. If there is a lexical error in the input, indicate where that error is
encountered by writing a short explanation of the error in between the valid tokens that
appear before and after the error(s) (something brief like “illegal character #” if a “#” was
found in the file would be fine). The token list should include additional tokens found
after any error(s) in the input. You may use any reasonable token names (e.g., LPAREN,
ID(x), etc.) as long as your meaning is clear.

A copy of the MiniJava grammar is attached as the last page of the test. You may
remove it for reference while you answer this question. You should assume the scanner
implements MiniJava syntax as defined in that grammar, with no extensions to the
language.

IF ID(a) LESS EQUALS INT(1) ID(do)

ID(data) EQUALS LBRACE

Invalid character “:”

WHILE RBRACE ID(end)

Other token names received full credit as long as it was clear what was intended.
Several solutions had a deduction, though, because it appeared that the invalid
character was treated as an “error token” to be returned to the parser (i.e., tokens
like ERROR(“;”)).

 CSE 401/M501 18sp Midterm Exam 5/2/18 Sample Solution

 Page 4 of 8

Question 3. (12 points) Ambiguity. Consider the following grammar:

A ::= x = B ;
B ::= B + B
B ::= y

(A and B are non-terminals, x, y, +, =, and ; are terminals)

(a) (6 points) Is this grammar ambiguous? If so, give a proof that it is by showing two
distinct parse trees, or two distinct leftmost (or rightmost) derivations, for some string. If
not, give an informal, but precise argument why it is not ambiguous.

Here are two solutions. Two leftmost derivations of the string x = y + y + y:

A => x = B; => x = B+B; => x = y+B; => x = y+B+B; => x = y+y+B; => x = y+y+y;
A => x = B; => x = B+B; => x = B+B+B; => x = y+B+B; => x = y+y+B; => x=y+y+y;

Two parse trees for the string x = y + y + y:

(b) (6 points) If your answer to part (a) is that the grammar is ambiguous, give an
unambiguous grammar that generates the same language as the original grammar. If
there are several possible solutions, give one where precedence and associativity are
handled the same as in Java (i.e., + is left-associative, etc.) if that is possible.

If the grammar in part (a) is unambiguous, you may leave this part of the problem blank
to receive full credit for it.

A ::= x = B ;
B ::= B + y
B ::= y

Notes: This solution gives + higher precedence than assignment (=) (as was true in
the original grammar), and + is now left associative.

A

B

x

B B

= y + y + y ;

B B

A

B

x

B B

= y + y + y ;

B B

 CSE 401/M501 18sp Midterm Exam 5/2/18 Sample Solution

 Page 5 of 8

Question 4. (34 points) The LR parsing question that always has a funny(?) slogan.
Here is a tiny grammar.

 1. S' ::= S $ ($ represents end-of-file)
 2. S ::= A b
 3. A ::= a B
 4. A ::= a
 5. B ::= b

(a) (12 points) Draw the LR(0) state machine for this grammar.

(b) (8 points) Compute nullable and the FIRST and FOLLOW sets for the nonterminals
S, A, and B in the above grammar:

Symbol nullable FIRST FOLLOW
S false a $

A false a b

B false b b
(continued on next page)

S’::= . S $
S ::= . A b
A ::= . a B
A ::= . a

S
S’::= S . $

1 2

S ::= A . b
3

A ::= a . B
A ::= a .
B ::= . b

B ::= b .

A ::= a B .

S ::= A b .
4

65

7

A

a

b

B

b

 CSE 401/M501 18sp Midterm Exam 5/2/18 Sample Solution

 Page 6 of 8

Question 4. (cont.) Grammar repeated from previous page for reference:

 1. S' ::= S $ ($ represents end-of-file)
 2. S ::= A b
 3. A ::= a B
 4. A ::= a
 5. B ::= b

(c) (10 points) Write the LR(0) parse table for this grammar based on the LR(0) state
machine in your answer to part (a).

(d) (2 points) Is this grammar LR(0)? Explain why or why not.

No. State 5 has a shift-reduce conflict.

(e) (2 points) Is this grammar SLR? Explain why or why not.

No. The problem with state 5 is that if the next input symbol is b the state contains
both a shift to state 7 and a reduction using the rule A ::= a. In the SLR table we
should remove the reduction if b is not in FOLLOW(A), but since b is in that set the
reduction remains and the shift-reduce conflict is still present.

 a b $ S A B

1 s5 g2 g3

2 acc

3 s4

4 r2 r2 r2

5 r4 s7, r4 r4 g6

6 r3 r3 r3

7 r5 r5 r5

 CSE 401/M501 18sp Midterm Exam 5/2/18 Sample Solution

 Page 7 of 8

Question 5. (15 points, 5 each) LL grammars. For each of the following grammars
indicate if it satisfies the LL(1) condition, i.e., it is possible to construct a predictive
parser using the grammar. If the grammar is not LL(1) explain why not. (Hint: you may
find it helpful to determine FIRST, FOLLOW, and nullable for some or all of the non-
terminals. But the answers can probably be figured out without having to go through all
the details of the algorithms to compute those sets, and you do not need to do that.)

(a) P ::= a b Q c R
 Q ::= c | R b | ε
 R ::= a

No, this grammar is not LL(1). Q is nullable so we need to also look at
FOLLOW(Q) to decide which production to pick when we expand Q. FOLLOW(Q)
contains c, as does FIRST(Q). Since those sets contain a common element we
cannot pick the proper Q production when c is the next symbol in the input (there is
no way to decide whether to pick Q::=c or Q::=ε).

(b) P ::= a b Q c R
 Q ::= c | R b
 R ::= a

Yes. The FIRST sets for the productions of each non-terminal are disjoint and none
of the non-terminals are nullable. (Reason not required – we forgot to ask for it in
the question, but probably should have.)

(c) P ::= a b Q c R
 Q ::= c | R b
 R ::= a | c

No. Since c appears in FIRST(R), then c is in the FIRST set for both Q productions
and we cannot pick the correct production to expand Q if c is the next input symbol.

 CSE 401/M501 18sp Midterm Exam 5/2/18 Sample Solution

 Page 8 of 8

Question 6. (15 points) Semantics. Bowing to popular demand, we’ve decided to add a
for loop to MiniJava. The syntax is for(init; test; update) Statement. The init and
update parts are arbitrary Statements; the test part is an expression that must evaluate to
true or false. As in C or Java, the init, test, and update parts of the for statement do
not have to be related to each other, e.g., for(i=0; x<y; n=17) b=false; is
legal (although it is terrible style).

(a) (7 points) Given the statement for(i=0; i<n; i=i+1) x=i+x;, draw an
appropriate Abstract Syntax Tree (AST) for that statement below. Don't worry about
matching the exact structure of the MiniJava AST classes – just be sure your drawing
shows a reasonable AST for this statement.

(b) (8 points) Annotate your AST by writing next to the appropriate nodes the checks or
tests that should be done in the static semantics/type-checking phase of the compiler to
ensure that this statement does not contain any errors. You do not need to specify an
attribute grammar – just show the necessary tests. If a particular test applies to multiple
nodes you can write it once and indicate which nodes it applies to, as long as your
meaning is clear and readable.

(b) There are only a handful of node types in the AST and the same semantic checks
are needed for each occurrence of the same type of node. Here’s the list:

for: verify that the 2nd child has type Boolean.
Identifier nodes: verify identifier is declared and has type int. Type of node is int.
Integer constant nodes: type of node is int.
+ (addition): verify both operands have type int. Type of + node is int.
< (comparison): verify both operands have type int. Type of < node is Boolean.
= (assignment): verify both operands have type int. Verify that the left operand
designates a location (lvalue).

Note: the for node has 4 children. Three are statements and one is an expression.
The only check needed in that node is to verify that the expression is Boolean.

for

= < = =

i ii x 0 n +

i 1

+

i x

