
 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 1 of 14

Question 1. (10 points) Compiler phases. For each of the following situations, indicate where the
situation would normally be discovered or handled in a production compiler. Assume that the compiler
is a conventional one that generates native code for a single target machine (say, x86-64), and assume
that the source language is standard Java (if it matters). Use the following abbreviations for the stages:

scan – scanner
parse – parser
sem – semantics/type check
opt – optimization (dataflow/ssa analysis; code

transformations)
instr – instruction selection & scheduling

reg – register allocation
run – runtime (i.e., when the compiled code is

executed)
can’t – can’t always be done during either

compilation or execution

opt Eliminate re-calculation of the expression a+b if it is guaranteed to be available at some point in
the program that calculates it again.

instr Decide to use a leaq instruction to combine two addition operations into a single instruction

can’t Report the existence of a non-terminating (“infinite”) loop in a program

sem Report the error in the array element reference a[x<y] (assuming a is an array of int values
and that x and y also are int variables) (x<y is a Boolean value, which can’t be a subscript)

scan Report that # is not a legal operator in the expression x#y, where x and y are int variables

parse Report that <=> is not a legal operator in a full Java program (<= and > are valid Java tokens
but they cannot appear adjacent to each other in a valid program)

reg Ensure that code for a method that returns a reference (pointer) places its result in %rax

run Report an error because the size used to allocate a new array is a negative integer value

instr Arrange the instructions in a basic block to do LOAD instructions early so their execution
overlaps other computation that can be done while the LOADs are in progress

opt In the loop for (i=0; i<n; i++) { ... a[i] ... }, rewrite the code to use
pointers instead: for (p=&a[0]; p<p+n; p++) { ... *p ... }

 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 2 of 14

Do not remove this page from the exam. However, there is an extra copy of this page at the end of the
exam that you can remove for reference while you are working if that is helpful.

Question 2. (20 points) A bit of x86-64 coding. Here is a small C function that adds the elements of an
integer array in a somewhat tedious manner:

// return the sum a[i]+...+a[n-1]
// i.e., asum(a,0,n) returns the sum of an n element array a[0..n-1]
int asum(int a[], int i, int n) {
 int result;
 if (i == n)
 result = 0;
 else
 result = a[i] + asum(a, i+1, n);
 return result;
}

On the next page, translate this function into x86-64 assembly language. You should use the standard
runtime conventions for parameter passing, register usage, and so forth that we used in the MiniJava
project, including using %rbp as a stack frame pointer when a stack frame is allocated. Note that this is
simple C code, not a Java method, so there is no this pointer or method vtable involved.

Reference and ground rules for x86-64 code, (same as for the MiniJava project and other x86-64 code):
• You must use the Linux/gcc assembly language, and must follow the x86-64 function call,

register, and stack frame conventions:
o Argument registers: %rdi, %rsi, %rdx, %rcx, %r8, %r9 in that order
o Called function must save and restore %rbx, %rbp, and %r12-%r15 if these are

used in the function
o Function result returned in %rax
o %rsp must be aligned on a 16-byte boundary when a call instruction is executed
o %rbp must be used as the base pointer (frame pointer) register for this question

• Pointers and ints are 64 bits (8 bytes) each, as in MiniJava
• The full form of a memory address is constant(%rbase,%rindex,scalefactor), which references

memory address %rbase+%rindex*scalefactor+constant. scalefactor must be 0, 2, 4, or 8.
• Your x86-64 code must implement all of the statements in the original function. You may not

rewrite the code into a different form that produces equivalent results (i.e., restructuring or
reordering the code or eliminating function calls). You should allocate space for the local
variable result and generate appropriate load and store instructions to implement the
assignment and return statements that use it. (And, of course, you can allocate additional
space in the stack frame as needed to store other data.). Other than that, you can use any
reasonable x86-64 code that follows the standard function call and register conventions – you
do not need to mimic the code produced by your MiniJava compiler.

• Please include brief comments in your code to help us understand what the code is supposed to
be doing (which will help us assign partial credit if it doesn’t do exactly what you intended.)

 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 3 of 14

Question 2. (cont.) Write your x86-64 translation of function asum into x86-64 assembly language
below. Remember to read and follow the above ground rules carefully. Brief comments are
appreciated. Original code repeated below for convenience:

int asum(int a[], int i, int n) {
 int result;
 if (i == n)
 result = 0;
 else
 result = a[i] + asum(a, i+1, n);
 return result;
}

(Very literal translation here. Many others are possible, of course, but for full credit, solutions had to
follow the ground rules, including code to store and load the result variable.)

Argument registers: %rdi = a, %rsi = i,%rdx = n

asum: pushq %rbp # allocate stack frame

 movq %rsp,%rbp

 subq $16,%rsp # space for local variables & temp

 cmpq %rsi,%rdx # compare i:n

 jne else # jump not equal

 movq $0,%rax # result = 0

 movq %rax,-8(%rbp) # store result

 jmp done

else: movq 0(%rdi,%rsi,8),%rax # load a[i]

 movq %rax,-8(%rbp) # store a[i] in result temporarily

 addq $1,%rsi # call asum(a,i+1,n)

 call asum # (recursive result in %rax)

 addq -8(%rbp),%rax # add old a[i] to asum(a,i+1,n)

 movq %rax,-8(%rbp) # store sum in result

done: movq -8(%rbp),%rax # return result in %rax

 movq %rbp,%rsp # reset %rsp and free local vars

 popq %rbp # restore caller’s %rbp

 ret # return to caller

 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 4 of 14

Question 3. (25 points) Compiler hacking. As is often the case, now that our MiniJava compiler is done,
one of our customers would like us to add a new “feature”. The customer has a bunch of old code that
includes a different kind of if statement, and they would like us to add this to MiniJava.

The simplest form of the new if statement has one condition and looks like this:

 if x > y => temp = x; x = y; y = temp; fi

The statement begins with if and ends with fi. A => arrow is used to separate the condition from the
statement(s) that are executed when it is true. If the condition is false, execution of everything between
=> and fi is skipped.

More interesting is that an if statement can contain several condition/statements pairs separated by
[] (a box made up of adjacent left and right square brackets). For example, the following if sets sign
to -1, 0, or +1, depending on whether n is negative, 0, or positive:

 if n > 0 => sign = 1;
 [] n < 0 => sign = 0-1; // i.e., -1, but we don’t have unary minus in MiniJava
 [] true => sign = 0;
 fi

If the if-fi statement contains more than one condition/statement sequence group separated by []
boxes, the conditions are evaluated in order from beginning to end. When a condition is found that
evaluates to true, the statement(s) to the right of the corresponding => are executed, and then
execution of the entire if-fi statement is done.

Fine print: there has to be at least one condition => statements pair between if and fi. The list of
statements following the => arrow cannot be empty.

Answer the questions below about how this new if statement would be added to a MiniJava compiler.
There is likely way more space than you will need for some of the answers. The full MiniJava grammar is
attached at the end of the exam if you need to refer to it.

(a) (4 points) What new lexical tokens, if any, need to be added to the scanner and parser of our
MiniJava compiler to add this new if statement to the original MiniJava language? Just describe any
necessary changes and new token name(s) needed. You don’t need to give JFlex or CUP specifications or
code.

We need three new lexical tokens: BOX ([]), ARROW (=>), and a new keyword FI

(continued on next page)

 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 5 of 14

Question 3. (cont.) (b) (6 points). Give an unambiguous context-free grammar rule or rules to add this
new if-fi conditional statement to the MiniJava grammar for Statement. Your answer should include
terminals and non-terminals as needed, including the new terminal symbols identified in your answer to
part (a), and can include additional new grammar rules for existing or new non-terminals as needed.
You only need to give the additions and changes to the MiniJava grammar. You do not need to write
CUP specifications or other MiniJava code, but the context free grammar rules you write here should be
directly usable as the basis for appropriate CUP rules that would parse the new if-fi statement.

Hint: it might be useful to think about how things like method parameter lists, which are comma-
separated lists of expressions, are specified using CUP grammar productions.

Add a new production for the non-terminal Statement, plus some additional productions:

 Statement ::= ... | IF IfParts FI

 IfParts ::= IfPart | IfParts BOX IfPart

 IfPart ::= Expression ARROW StatementList

 StatementList ::= Statement | StatementList Statement

(c) (5 points) Describe the changes or additions that need to be made to the MiniJava Abstract Syntax
Tree (AST) classes or node definitions to add this new if-fi statement to the language. You should
not include specific Java code or AST class definitions, but you should precisely describe the new or
changed node types and their contents so that it is obvious how they would be implemented.

Add a new MultiIf node that is a subclass of Statement, and that either has a single child that is a
list of IfParts, or has multiple children, each of which are IfParts.

Add an IfPart node with two children: and expression, and a list of Statements (not just a single
statement).

Of course, the actual node names could be anything appropriate – they don’t need to be the same as
these. But the structure needs to separate these two types of nodes to provide reasonable structure
for visitor passes that do type checking and code generation.

(continued on next page)

 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 6 of 14

Question 3. (cont.) (d) (4 points) What additions or changes need to be made to the static semantics /
type checking part of the compiler to verify that an if-fi statement is correct? Again, you don’t need
to provide specific visitor method code or anything like that – just describe what type or other
information needs to be produced or checked for this new statement.

Verify that the type of the expression(s) to the left of all =>s are Boolean.

(e) (6 points) Describe the x86-64 code shape for this new if-fi statement that would be generated
by a MiniJava compiler. Your answer should be similar in format to the descriptions we used in class for
other language constructs. Your answer should show the code shape needed for a if-fi statement
like the following one with two condition/statement pairs:

 if cond1 => stmts1
 [] cond2 => stmts2
 fi

Use Linux/gcc x86-64 instructions and assembler syntax when needed. However, remember that the
question is asking for the code shape for this expression, so using things like Jfalse, for example, to
indicate control flow, instead of pure x86-64 machine instructions, is fine as long as the meaning is clear.
If you need to make any additional assumptions about code generated by the rest of the compiler you
should state them.

 Code for cond1

 Jfalse L1

 Code for stmts1

 JMP L2

L1: Code for cond2

 Jfalse L2

 Code for stmts2

L2:

 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 7 of 14

Question 4. (16 points) A little optimization. For this question we’d like to perform local constant
propagation and folding (compile-time arithmetic), plus copy propagation (reuse values that are already
present in another temporary ti when possible), strength reduction (replace expensive operations like *
with cheaper ones when possible), common subexpression elimination, and dead code elimination.

The first column of the table below gives the three-address code generated for this statement:
y[i] = a*x[i] + y[i]

(a) Fill in the second column with the code from the first column after any changes due to constant
propagation and folding, copy propagation, strength reduction, and common subexpression elimination,
but before any dead code elimination. (Notes: memory reference addresses can use a register (ti or fp)
and a constant offset only – they cannot be more complex. Also note that the arrays x and y are
assumed to be local variables in the current stack frame.)

(b) In the third column, check the box “deleted” if the statement would be deleted by dead code
elimination after performing the constant propagation/folding, copy, and strength reduction
optimizations in part (a).

Original Code After constant prop./folding & copy prop., strength
reduction, and CSE (copy original code if no change)

“X” if deleted as
dead code

t1 = *(fp + aoffset) // a t1 = *(fp + aoffset) // a

t2 = *(fp + ioffset) // i t2 = *(fp + ioffset) // i

t3 = t2 * 8 // 8*i t3 = t2 << 3 // 8*i

t4 = fp + t3 t4 = fp + t3

t5 = *(t4 + xoffset) // x[i] t5 = *(t4 + xoffset) // x[i]

t6 = t1 * t5 // a*x[i] t6 = t1 * t5 // a*x[i]

t7 = *(fp + ioffset) t7 = t2 X

t8 = t7 * 8 t8 = t3 X

t9 = fp + t8 t9 = t4 X

t10 = *(t9 + yoffset) // y[i] t10 = *(t4 + yoffset) // y[i]

t11 = t6+t10 // a*x[i] + y[i] t11 = t6+t10 // a*x[i] + y[i]

t12 = *(fp + ioffset) t12 = t2 X

t13 = t12 * 8 t13 = t3 X

t14 = fp + t13 t14 = t4 X

*(t14 + yoffset) = t11 // y[i] = … *(t4 + yoffset) = t11 // y[i] = …

 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 8 of 14

Do not remove this page from the exam. However, there is an extra copy of this page at the end of the
exam that you can remove for reference while you are working if that is helpful.

The next two questions concern the following control flow graph.

The rest of this page contains reference material and definitions that might be useful when answering
the next few questions.

Reference Material

Every control flow graph has a unique start node s0. (B0 in the above control flow graph)
Node x dominates node y if every path from s0 to y must go through x. A node x dominates itself.
A node x strictly dominates node y if x dominates y and x ≠ y.
The dominator set of a node y is the set of all nodes x that dominate y.
An immediate dominator of a node y, idom(y), has the following properties:
 - idom(y) strictly dominates y (i.e., dominates y but is different from y)
 - idom(y) does not dominate any other strict dominator of y
A node might not have an immediate dominator. A node has at most one immediate dominator.
The dominator tree of a control flow graph is a tree where there is an edge from every node x to its
immediate dominator idom(x).
The dominance frontier of a node x is the set of all nodes y such that
 - x dominates a predecessor of y, but
 - x does not strictly dominate y

Dominance frontier criteria for inserting Φ-functions in SSA graphs: If node x contains the definition of
a variable a, then every node in the dominance frontier of x needs a Φ-function for a.

c = a + b
d = b + c

b = c + 1
d = a + b

a = a + b
c = b + c

d = a + c

B0

B1

B2 B3

a = read()
b = read()

B4

 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 9 of 14

Do not remove this page from the exam. However, there is an extra copy of this page at the end of the
exam that you can remove for reference while you are working if that is helpful.

Question 5. (20 points) Dataflow analysis – available expressions.

Recall that an expression e is available at a program point p if every path leading to point p contains a
prior definition of expression e and e is not killed along a path from a prior definition by having one of its
operands re-defined on that path.

We would like to compute the set of available expressions at the beginning of each basic block in the
flowgraph shown on the previous page.

For each basic block b we define the following sets:

 AVAIL(b) = the set of expressions available on entry to block b

 NKILL(b) = the set of expressions not killed in b (i.e., all expressions defined somewhere in the
flowgraph except for those killed in b)

 DEF(b) = the set of all expressions defined in b and not subsequently killed in b

The dataflow equation relating these sets is

 AVAIL(b) = ∩x ∈ preds(b) (DEF(x) ∪ (AVAIL(x) ∩ NKILL(x)))

i.e., the expressions available on entry to block b are the intersection of the sets of expressions available
on exit from all of its predecessor blocks x in the flow graph.

On the next page, calculate the DEF and NKILL sets for each block, then use that information to calculate
the AVAIL sets for each block. You will only need to calculate the DEF and NKILL sets once for each
block. You may need to re-calculate some of the AVAIL sets more than once as information about
predecessor blocks change.

Once you have calculated the AVAIL sets, be sure to answer the question at the bottom about whether
there are any redundant expression calculations that can be eliminated.

Hint: notice that there are only a limited number of expressions calculated in this flowgraph. These
include a+b, b+c, a+c, and so forth. So all of the AVAIL, NKILL, and DEF sets for the different blocks will
contain some, none, or all of these expressions. In your answer it is okay to write something like “all
expressions that don’t include b” rather than listing all of them – or you can list all of them if you prefer.

 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 10 of 14

Question 5. (cont.) (a) (8 points) For each of the blocks B0, B1, B2, B3, and B4, write their DEF and NKILL
sets in the table below.

Block DEF NKILL

B0 ∅	 c+1

B1 a+b, b+c a+b

B2 a+c a+b, a+c, b+c, c+1

B3 c+1, a+b a+c, c+1

B4 ∅ ∅	

(b) (10 points) Now, in the table below, give the AVAIL sets showing the expressions available on entry
to each block. If you need to update this information as you calculate the sets, be sure to cross out
previous information so it is clear what your final answer is.

Block AVAIL

B0 ∅	

B1 ∅	

B2 a+b, b+c

B3 a+b, b+c

B4 a+b

(c) (2 points) Are there any redundant expressions in the flowgraph that can be eliminated? (i.e.,
expressions that do not need to be recomputed because they are available at that point in the
flowgraph as discovered by this analysis.) If so, identify the expressions and the specific locations
(blocks) where they are redundant.

Yes: a+b is available entering B4 and does not need to be recomputed there.

 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 11 of 14

Question 6. (18 points) Dominators and SSA. (a) (8 points) Using the same control flow graph from the
previous problem, complete the following table. For each node, list the node(s) that it strictly
dominates, and list the nodes in its dominance frontier (if any):

Node Strictly Dominates Dominance Frontier

B0 B1, B2, B3, B4 ∅	

B1 B2, B3, B4 B1

B2 ∅	 B1, B4

B3 ∅	 B4

B4 ∅	 ∅	

(b) (10 points) Now redraw the flowgraph in SSA (static single-assignment) form. You need to insert
appropriate Φ-functions where they are required and, once that is done, add appropriate version
numbers to all variables that are assigned in the flowgraph. You should insert all of the Φ-functions that
are required by the dominance frontier criterion, but no others. You do not need to trace the steps of
any particular algorithm to place the Φ-functions as long as you add them to the flowgraph in
appropriate places.

c2 = Φ(c0,c1)
d2 = Φ(d0,d3)
c1 = a1 + b1
d1 = b1 + c1

b2 = c1 + 1
d4 = a1 + b2

b3 = Φ(b1,b2)
d5 = Φ(d3,d4)
a2 = a1 + b3
c3 = b3 + c1

d3 = a1 + c1

B0

B1

B2 B3

a1 = read()
b1 = read()

B4

 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 12 of 14

Do not remove this page from the exam. However, there is an extra copy of this page at the end of the
exam that you can remove for reference while you are working if that is helpful.

The last two questions concern register allocation and instructions scheduling. For both of these
questions, assume that we’re using the same hypothetical machine that was presented in lecture and in
the textbook examples for list scheduling.

The instructions on this example machine are assumed to take the following numbers of cycles each:

Operation Cycles
LOAD 3
STORE 3
ADD 1

MULT 2
SHIFT 1

Our instruction selection algorithm has been modified so it does not re-use registers, but instead just
creates temporaries and leaves register selection for later. Given the statement y[i] = a*x[i]; here’s what
the instruction selector generated:

 a. LOAD t1 <- a // t1 = a
 b. LOAD t2 <- x // t2 = address of x[] array
 c. LOAD t3 <- i // t3 = i
 d. SHIFT t4 <- t3, 3 // t4 = i*8 (shift t3 left 3)
 e. ADD t5 <- t2, t4 // t5 = address of x[i]
 f. LOAD t6 <- MEM[t5] // t6 = x[i]
 g. MULT t7 <- t1, t6 // t7 = a*x[i]
 h. LOAD t8 <- y // t8 = address of y[] array
 i. ADD t9 <- t4, t8 // t9 = address of y[i]
 j. STORE MEM[t9] <- t7 // store y[i]

(Note that this code assumes that variables x and y contain pointers to arrays, as in Java.)

In a real compiler we would first use list scheduling to pick a (possibly) better order for the instructions,
then use graph coloring to assign temporaries (t1-t9) to actual registers. But for this exam we’re going
to ask those two questions separately so the answers don’t depend on each other, which will make it
much easier to assign points fairly (J).

Answer the questions about this sequence of code on the next two pages.

 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 13 of 14

Question 7. (15 points) Register allocation/graph coloring.

(a) (9 points) Draw the interference graph for the temporary variables (t1-t9) in the code on the
previous page. You should assume that the code is executed in the sequence given and not rearranged
before assigning registers.

(b) (6 points) Give an assignment of groups of temporary variables to registers that uses the minimum
number of registers possible based on the information in the interference graph. Use R1, R2, R3, … for
the register names.

Three registers are needed. Here is one of several possibilities:

 R1: t1, t7

 R2: t2, t5, t6, t8, t9

 R3: t3, t4

t1

t3

t2

t4

t5

t6

t7

t8

t9

 CSE 401/M501 19au Final Exam 12/10/19 Sample Solution

CSE 401/M501 19au Final, December 10, 2019 Page 14 of 14

Question 8. (16 points) Forward list scheduling. (a) (8 points) Given the original sequence of instructions
on the previous page for the assignment statement y[i] = a*x[i], draw the precedence graph showing the
dependencies between these instructions. Label each node (instruction) in the graph with the letter
identifying the instruction (a-j) and its latency – the number of cycles between the beginning of that
instruction and the end of the graph on the shortest possible path that respects the dependencies.

(b) (8 points) Rewrite the instructions in the order they would be chosen by forward list scheduling. If
there is a tie at any step when picking the best instruction to schedule next, pick one of them arbitrarily.
Label each instruction with its letter and instruction code (LOAD, ADD, etc.) from the original sequence
above and the cycle number on which it begins execution. The first instruction begins on cycle 1. You
do not need to show your bookkeeping or trace the algorithm as done in class, although if you leave
these clues about what you did, it could be helpful if we need to figure out how to assign partial credit.

 1: c. LOAD i
 2: b. LOAD x
 3: a. LOAD a
 4: d. SHIFT
 5: e. ADD
 6: f. LOAD x[i]
 7: h. LOAD y
 8: --
 9: g. MULT
 10: i. ADD
 11: j. STORE y[i]

Grading note: the above solution includes the operands for load and store instructions for clarity, but
these did not need to be included in the answers.

Have a great holiday break and best wishes for the new year!
The CSE 401 staff

a

b d

e

c

f

g

h

8

12

45

78

9

i

3
j

10

13

