
CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 1 of 15

Question 1. (10 points) Compiler phases. For each of the following situations, indicate where the
situation would normally be discovered or handled in a production compiler. Assume that the compiler
is a conventional one that generates native code for a single target machine (say, x86-64), and assume
that the source language is standard Java (if it matters). Use the following abbreviations for the stages:

scan – scanner
parse – parser
sem – semantics/type check
opt – optimization (dataflow/ssa analysis; code

transformations)
instr – instruction selection & scheduling

reg – register allocation
run – runtime (i.e., when the compiled code is

executed)
can’t – can’t always be done during either

compilation or execution

run In an array reference a[k], discover that the subscript k is out of bounds

sem Report a variable x has been declared twice in the same scope (duplicate declaration)

reg Insert extra store and load instructions in the program when there are not enough registers
available to hold all active values

sem In an assignment statement var=exp, discover that the type of exp is not assignment compatible
with the type of var

opt Discover code that computes the same value each time a loop executes and move it so the value
is computed just once outside the loop

parse Discover that === is not a legal relational operator in Java (The scanner will return separate
tokens for == followed by = for full Java. The parser will report that these two tokens cannot appear
adjacent to each other.)

sem Decide whether a method declaration overrides or overloads a method in some superclass

run In the assignment statement p=(t)q that contains a cast involving object references, verify that
the object referenced by q actually has type t or some subtype of t

opt Determine that some variable used in the program might not be initialized at the point where it
is used (live variable dataflow analysis)

can’t Decide if a program is stuck in an infinite loop or will eventually terminate after it starts
executing

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 2 of 15

Question 2. (20 points) x86-64 coding. Consider the following tiny MiniJava class:

class Test {
 int min(int i, int j) {
 int ans;
 if (i < j)
 ans = i;
 else
 ans = j;
 return ans;
 }

int min3(int x, int y, int z) {
 return this.min(x, this.min(y,z));
}

} // end of class Test

On the next page, translate the methods in this class into x86-64 assembly language. You should use the
standard runtime conventions for parameter passing (including the this pointer), register usage, and
so forth that we used in the MiniJava project, including using %rbp as a stack frame pointer when a
stack frame is allocated. You should assume that the vtable for class Test contains an appropriate
pointer to min at offset +8 and a pointer to min3 at offset +16.

call instruction hints: Recall that if %rax contains a pointer to (i.e., the memory address of) the first
instruction in a method, then you can call the method by executing call *%rax. If %rax contains
the address of a vtable, we can call a method whose pointer is at offset d in that vtable by executing
call *d(%rax).

Reference and ground rules for x86-64 code, (same as for the MiniJava project and other x86-64 code):

• You must use the Linux/gcc assembly language, and must follow the x86-64 function call,
register, and stack frame conventions:

o Argument registers: %rdi, %rsi, %rdx, %rcx, %r8, %r9 in that order
o Called function must save and restore %rbx, %rbp, and %r12-%r15 if these are

used in the function
o Function result returned in %rax
o %rsp must be aligned on a 16-byte boundary when a call instruction is executed
o %rbp must be used as the base pointer (frame pointer) register for this question

• Pointers and ints are 64 bits (8 bytes) each, as in MiniJava
• Your x86-64 code must implement all of the statements in the original methods. You may not

rewrite the method into a different form that produces equivalent results (i.e., restructuring or
reordering the code or eliminating method calls). Other than that, you can use any reasonable
x86-64 code that follows the standard function call and register conventions – you do not need
to mimic the code produced by your MiniJava compiler.

o Exception: in min, your code can simply place the result in %rax and does not need to
store/load a separate variable ans if you do not want to do that. You also do not need
to allocate a stack frame for min if you don’t need it.

• Please include brief comments in your code to help us understand what the code is supposed to
be doing (which will help us assign partial credit if it doesn’t do exactly what you intended.)

You should remove this page from the exam and use it while answering this question. Do not write on
this page – it will not be scanned for grading.

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 3 of 15

Question 2. (cont.) Write your x86-64 translations of methods min and min3 into x86-64 assembly
language below. (Remember to read the above ground rules carefully. You must use regular vtables
and dynamic dispatch for method calls, for example, but you do not need to allocate a stack frame or
use local variables in min if not needed. Be sure to include any necessary assembly language labels in
your code, and brief comments are appreciated.)

There are obviously many, many correct solutions. The code below is a straightforward solution that
is similar to lightly optimized code that would be generated by a x86-64 C compiler, with extensions to
handle MiniJava dynamic method dispatch. Other correct solutions received full credit, of course.

min([this], i, j)

compute result of min directly in registers – no stack frame needed

Test$min: movq %rdx,%rax # set result = j

 cmpq %rdx,%rsi # compare j to i

 jge L1 # jump i >= j

 movq %rsi,%rax # set result = i

L1: ret # return

min3([this], x, y, z)

Test$min3: pushq %rbp # standard prologue

 movq %rsp,%rbp

 subq $16,%rsp # allocate space to store this, x

 movq $rdi,-8(%rbp) # store this

 movq %rsi,-16(%rbp) # store x

 # call this.min(y,z) # first argument is this, already in %rdi

 movq %rdx,%rsi # next argument is y

 movq %rcx,%rdx # last argument is z

 movq 0(%rdi),%rax # load vtable pointer

 call *8(%rax) # call min through vtbl – result in %rax

 # call this.min(x,result)

 movq -8(%rbp),%rdi # reload this (first argument)

 movq -16(%rbp),%rsi # second argument is x

 movq %rax,%rdx # third argument is min result

 movq 0(%rdi),%rax # load vtable pointer

 call *8(%rax) # call min – result in %rax

 # return – min result already in %rax is final result of min3

 movq %rbp,%rsp # free stack frame

 popq %rbp # restore %rbp

 ret # return to caller

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 4 of 15

Question 3. (24 points) Compiler hacking. Now that we’ve written a MiniJava compiler, we would like
to take this opportunity to add a new feature to the language. This time we would like to add a
simultaneous assignment statement that looks like this: x, y = a, b;. The meaning of this assignment is
that the expressions are evaluated from left to right, then, after the expressions are evaluated, the value
of a is assigned to x and the value of b is assigned to y. Some examples:

 a, b = 0, 1; // set a = 0 and b = 1
 n, p = 17, true; // set n = 17 and p = true
 p, q = q, p; // swap the values of p and q
 x, y = x+1, x; // increment x and assign the old value of x to y

Notice in the last two examples, in particular, it is important that the values are evaluated from left to
right and then the assignments are performed after that. So, in the last example, the value of the
expression assigned to y is not affected by the new value assigned to x, since the assignments happen
left to right after the expressions are evaluated.

To add this statement to MiniJava, we will add the following production to the MiniJava grammar:

 Statement ::= Identifier “,” Identifier “=” Expression “,” Expression “;”

Answer the questions on the following pages about how this statement would be added to a MiniJava
compiler. There is likely way more space than you will need for some of the answers. The full MiniJava
grammar is attached as the last page of this exam if you need to refer to it.

Note: The original version of the question left off the “;” at the end of the grammar production.
During the exam we announced that people could add it if they wanted, but we would accept answers
with or without a “;” at the end. For consistency with the rest of MiniJava/Java, it should be there.

(a) (2 points) What new lexical tokens, if any, need to be added to the scanner and parser of our
MiniJava compiler to add this new expression to the original MiniJava language? Just describe any
necessary changes and new token name(s) needed. You don’t need to give JFlex or CUP specifications or
code, but you will need to use any token name(s) you write here in a later part of this question.

No new tokens needed

(continued on next page)

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 5 of 15

Question 3. (cont.) (b) (6 points) Complete the following new AST class to define an AST node type for
the simultaneous assignment statement. You only need to define instance variables and the constructor.
Assume that all needed package and import declarations are supplied, and don’t worry about visitor
code.

(Hint: recall that the AST package in MiniJava contains the following key classes: ASTNode,
Exp extends ASTNode, and Statement extends ASTNode. Also remember that each AST
node constructor has a Location parameter (supplied below), and the super(pos); statement at
the beginning of the constructor initializes the superclass with this information.)

public class SimulAssign extends Statement {
 // add instance variables below

 // constructor – add parameters and method body below

 public SimulAssign(Identifier id_l, Identifier id_r,

 Exp val_l, Exp val_r, Location pos){

 super(pos); // initialize location information in superclass

 this.target_l = id_l;

 this.target_r = id_r;

 this.value_l = val_l;

 this.value_r = val_r;

 }
}

(continued on next page)

public Identifier target_l, target_r;

 // left and right targets

public Exp value_l, value_r; // left and right values

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 6 of 15

Question 3. (cont.) (c) (5 points) Complete the CUP specification below to define a production for the
new simultaneous assignment operator including associated semantic action(s) needed to parse this
statement and create an appropriate SimulAssign AST node (as defined in part (b) above). You
should use any new lexical tokens defined in your answer to part (a) as needed. We have added the
necessary additional code to the parser rule for Statement to get started.

Hint: recall that the Location of an item foo in a CUP grammar production can be referenced as
fooxleft.

Statement ::= ...
 | SimulAssign:s {: RESULT = s; :}
 ...
 ;

SimulAssign::=

 IDENT:id_l COMMA IDENT:id_r EQUAL

 Exp:e_l COMMA Exp:e_r SCOLN

 {: RESULT = new SimulAssign(id_l, id_r, e_l, e_r,

 id_lxleft); :}

(d) (4 points) Describe the checks that would be needed in the semantics/type-checking part of the
compiler to verify that a simultaneous assignment statement is legal. You do not need to give code for a
visitor method or anything like that – just describe what language rules (if any) need to be checked and
any type information that needs to be produced for this statement.

• Check that each target variable is a declared name and is assignable (i.e., a local variable, field,
or parameter in the current scope that names an assignable location)

• Verify that each expression’s type is assignment-compatible with the corresponding variable

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 7 of 15

Question 3. (cont.) (e) (7 points) Describe the x86-64 code shape for this new simultaneous assignment
statement that would be generated by a MiniJava compiler. Your answer should be similar in format to
the descriptions we used in class for other language constructs. If needed, you should assume that the
code generated for an expression will leave the value of that expression in %rax, as we did in the
MiniJava project.

Use Linux/gcc x86-64 instructions and assembler syntax when needed. However, remember that the
question is asking for the code shape for this expression, so using things like Jfalse, for example, to
indicate control flow, instead of pure x86-64 machine instructions, is fine as long as the meaning is clear.
If you need to make any additional assumptions about code generated by the rest of the compiler you
should state them.

Since the targets for this statement are simple variables, and not computed locations like array
elements or object fields, we don’t have to do anything special to compute the destination locations
and save them prior to evaluating the expressions.

Assume that the statement is var1, var2 = exp1, exp2;

 <code evaluating exp1 into %rax>

 pushq %rax (save exp1 value while evaluating exp2)

 <code evaluating exp2 into %rax

 popq %rdx (reload exp1 value)

 movq %rdx,var1

 movq %rax,var2

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 8 of 15

Question 4. (16 points) A little optimization. For this question we’d like to perform local constant
propagation and folding (compile-time arithmetic), plus copy propagation (reuse values that are already
present in another temporary ti when possible), strength reduction (replace expensive operations with
cheaper ones when possible), common subexpression elimination, and dead code elimination.

The first column of the table below gives the three-address code generated for this sequence of
assignment statements: z = 5; x = z*3; x = 5*3+z*3;.

(a) Fill in the second column with the code from the first column after any changes due to constant
propagation and folding, copy propagation, and strength reduction. (Note: memory accesses must
involve a register (possibly fp) and a constant offset only – they cannot be more complex.)

(b) In the third column, check the box “deleted” if the statement would be deleted by dead code
elimination after performing the constant propagation/folding, copy, and strength reduction
optimizations in part (a).

Original Code After constant & copy prop., folding & strength reduction “X” if deleted
as dead code

t1 = 5 t1 = 5

*(fp + z_offset) = t1 *(fp + z_offset) = t1

t2 = *(fp + z_offset) t2 = 5 X

t3 = 3 t3 = 3 X

t4 = t2 * t3 t4 = 15 X

*(fp + x_offset) = t4 *(fp + x_offset) = t4 X

t5 = 5 t5 = 5 X

t6 = 3 t6 = 3 X

t7 = t5 * t6 t7 = 15 X

t8 = *(fp + z_offset) t8 = 5 X

t9 = 3 t9 = 3 X

t10 = t8 * t9 t10 = 15 X

t11 = t7 + t10 t11 = 30

*(fp + x_offset) = t11 *(fp + x_offset) = t11

Note: In a real machine instruction set, a store instruction normally contains just an address
computation (fp + offset) and a register to store. Normally there is not enough room in a binary
machine instruction that includes a memory address offset to also include a constant as another
operand. We weren’t specific about that, so answers that include instructions like *(fp + z_offset) = 5
resulting from constant folding received credit even though usually that would not be possible.

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 9 of 15

Question 5. (20 points) Dataflow analysis – security. Suppose we have a language that allows us to write
data to output and also to encrypt data. We would like to ensure that only encrypted data is written to
output. We would like to use a dataflow analysis to discover if this is the case by keeping track of which
variables contain encrypted data and which ones contain data that is not encrypted.

For this problem, assume that we have a language with the following operations:

 x = 17 store unencrypted constant in x
 x = y + z compute sum y+z (decrypting the values read from y and z if necessary). The result
 is not encrypted. The encryption status of variables y and z is not changed.
 x = y ordinary assignment (decrypting the value read from y if necessary). Variable x is
 not encrypted after this assignment. The encryption status of y is not changed.
 x = encrypt(y) encrypt the value of y and assign to x. x is encrypted after this assignment
 write(x) write the value of x (encrypted or not) to output

To use a dataflow framework to analyze which variables are encrypted at various points in the program
we will define the following sets:

 IN(b) The set of variables that are known to be encrypted on entry to block b
 OUT(b) The set of variables that are known to be encrypted on exit from block b
 GEN(b) The set of all variables that are assigned an encrypted value in block b and not later
 decrypted by a further assignment before exiting block b
 KILL(b) The set of all variables that are assigned a non-encrypted value in block b and not later
 assigned an encrypted value before exiting block b

The GEN(b) and KILL(b) sets can be computed once based on the static contents of each block b. The
IN(b) and OUT(b) sets need to be computed iteratively during the dataflow analysis.

(a) (6 points) Give appropriate dataflow equations for the IN and OUT sets for a block b in terms of the
IN, OUT, GEN, and KILL sets for b as defined above. As with all dataflow problems, these equations will
involve some combination of local information about block b itself as well as information about the
block’s predecessors and successors in the flow graph.

IN(b) = ∩x∈pred(b) OUT(x)	

OUT(b) = GEN(b) ∪ (IN(b) – KILL(b))	

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 10 of 15

Question 5. (cont.) Now consider the following flow graph and answer parts (b) and (c) below.

(b) (12 points) Complete the following table using iterative dataflow analysis to identify the encrypted
variables in the IN and OUT sets for each block in the above flow graph. You should first fill in the GEN
and KILL sets for each block, then iteratively solve for IN and OUT. You can choose whichever direction
you wish (forward or backward) to solve the equations. You should assume there are no encrypted
variables in the IN set for block B0. (If you run out of room, continue on the blank page provided at the
end of the exam and indicate here that your answer is continued there.)

Block GEN KILL IN (1) OUT (1) IN (2) OUT (2) IN (3) OUT (3)

B0 --- a, b --- --- --- ---

B1 --- c --- --- --- ---

B2 c --- --- c --- c

B3 b --- --- b --- b

B4 --- a b b b b

(c) (2 points) Based on your analysis, can this program write unencrypted data to output? If so, which
variables and where in the flowgraph?

Yes. The write(c) in block B4

c = a + b

c = b
c = encrypt(c)
write(c)

b = a + c
b = encrypt(b)

a = b + c
write(b)
write(c)

B0

B1

B2

B3

a = 12
b = a + 2

B4

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 11 of 15

The questions on the next page concern the same flowgraph from the previous problem, repeated here
for convenience.

The rest of this page contains reference material and definitions that might be useful. You should
remove this page from the exam and use it while answering the following questions. Do not write on
this page – it will not be scanned for grading.

Reference Material

Every control flow graph has a unique start node s0. (B0 in the above control flow graph)
Node x dominates node y if every path from s0 to y must go through x. A node x dominates itself.
A node x strictly dominates node y if x dominates y and x ≠ y.
The dominator set of a node y is the set of all nodes x that dominate y.
An immediate dominator of a node y, idom(y), has the following properties:
 - idom(y) strictly dominates y (i.e., dominates y but is different from y)
 - idom(y) does not dominate any other strict dominator of y
A node might not have an immediate dominator. A node has at most one immediate dominator.
The dominator tree of a control flow graph is a tree where there is an edge from every node x to its
immediate dominator idom(x).
The dominance frontier of a node x is the set of all nodes y such that
 - x dominates a predecessor of y, but
 - x does not strictly dominate y

Dominance frontier criteria for inserting Φ-functions in SSA graphs: If node x contains the definition of
a variable a, then every node in the dominance frontier of x needs a Φ-function for a.
You should remove this page from the exam and use it while answering the following questions. Do not
write on this page – it will not be scanned for grading.

c = a + b

c = b
c = encrypt(c)
write(c)

b = a + c
b = encrypt(b)

a = b + c
write(b)
write(c)

B0

B1

B2

B3

a = 12
b = a + 2

B4

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 12 of 15

Question 6. (20 points) Dominators and SSA. (a) (8 points) Using the same control flow graph from the
previous problem, complete the following table. List for each node: the node(s) that it strictly
dominates and the nodes that are in its dominance frontier (if any):

Node Strictly dominates Dominance Frontier

B0 B1, B2, B3, B4 ---

B1 B2, B3, B4 B1

B2 --- B3

B3 B4 B1

B4 --- ---

(b) (12 points) Now redraw the flowgraph in SSA (static single-assignment) form. You need to insert the
Φ-functions that are required by the dominance frontier criteria (see previous page), even if some of the
variables created by those functions are not used later. Once that is done, add appropriate version
numbers to all variables that are assigned in the flowgraph. You do not need to trace the steps of any
particular algorithm to place the Φ-functions as long as you add them to the flowgraph in appropriate
places.

b2 = Φ(b1,b4)
c1 = Φ(c0,c5)
c2 = a1 + b2

c3 = b2
c4 = encrypt(c3)
write(c4)

c5 = Φ(c2,c4)
b3 = a1 + c5
b4 = encrypt(b3)

a2 = b4 + c5
write(b4)
write(c5)

B0

B1

B2

B3

a1 = 12
b1 = a1 + 2

B4

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 13 of 15

The last two questions concern register allocation and instructions scheduling. For both of these
questions, assume that we’re using the same hypothetical machine that was presented in lecture and in
the textbook examples for list scheduling.

The instructions on this example machine are assumed to take the following numbers of cycles each:

Operation Cycles
LOAD 3
STORE 3
ADD 1

MULT 2

Our instruction selection algorithm has been modified so it does not re-use registers, but instead just
creates temporaries and leaves register selection for later. Given the statement s = s + a*b + b*c; here’s
what the instruction selector generated:

 a. LOAD t1 <- s
 b. LOAD t2 <- a
 c. LOAD t3 <- b
 d. MULT t4 <- t2, t3 // a*b
 e. ADD t5 <- t1, t4 // s + a*b
 f. LOAD t6 <- c
 g. MULT t7 <- t3, t6 // b*c
 h. ADD t8 <- t5, t7 // s + a*b + b*c
 i. STORE s <- t8

In a real compiler we would first use list scheduling to pick a (possibly) better order for the instructions,
then use graph coloring to assign temporaries (t1-t8) to actual registers. But for this exam we’re going
to ask those two questions separately so the answers don’t depend on each other, which will make it
much easier to assign points fairly (J).

Answer the questions about this sequence of code on the next two pages. You should remove this page
from the exam and use it while answering this question. Do not write on this page – it will not be
scanned for grading.

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 14 of 15

Question 7. (15 points) Register allocation/graph coloring.

(a) (9 points) Draw the interference graph for the temporary variables (t1-t8) in the code on the
previous page. You should assume that the code is executed in the sequence given and not rearranged
before assigning registers.

(b) (6 points) Give an assignment of groups of temporary variables to registers that uses the minimum
number of registers possible based on the information in the interference graph. Use R1, R2, R3, … for
the register names.

Three registers are needed. Here is one possible assignment, but there are several others.

 R1: t3, t8

 R2: t1, t5

 R3: t2, t4, t6, t7

t1 t2

t3

t4

t5t6

t7

t8

CSE 401/M501 18au Final Exam Sample Solution

CSE 401 / M501 18au Final, December 13, 2018 Page 15 of 15

Question 8. (15 points) Forward list scheduling. (a) (7 points) Given the original sequence of instructions
on the previous page for the assignment statement s = s + a*b + b*c; , draw the precedence graph
showing the dependencies between these instructions. Label each node (instruction) in the graph with
the letter identifying the instruction (a-i) and its latency – the number of cycles between the beginning
of that instruction and the end of the graph on the shortest possible path that respects the
dependencies.

(b) (8 points) Rewrite the instructions in the order they would be chosen by forward list scheduling (i.e.,
choosing on each cycle an instruction that is not dependent on any other instruction that has not yet
been issued or is still executing). If there is a tie at any step when picking the best instruction to
schedule next, pick one of them arbitrarily. Label each instruction with its letter and instruction code
(LOAD, ADD, etc.) from the original sequence above and the cycle number on which it begins execution.
The first instruction begins on cycle 1. You do not need to show your bookkeeping or trace the
algorithm as done in class, although if you leave these clues about what you did, it could be helpful if we
need to figure out how to assign partial credit.

Notes: Either b or c could start on cycle 1 with the other following on cycle 2. Here is the schedule:

 1: b LOAD
 2: c LOAD
 3: f LOAD
 4: a LOAD
 5: d MULT
 6: g MULT
 7: e ADD
 8: h ADD
 9: i STORE

Have a great holiday break and best wishes for the new year!
The CSE 401 staff

a

b

d

e

c

f

g

h

8

10

6

4

5

7

10

9

i
3

