CSE 401 15wi Final Exam Sample Solution

Question 1. (10 points) Compiler phases. For each of the following tasks, indicate where the task would
normally be done in a production compiler. Assume that the compiler is a conventional one that
generates native code for a single target machine (say, x86-64), and assume that the source language is
standard Java (if it matters). Use the following abbreviations for the stages:

scan —scanner
parse — parser

sem — semantics/type check

opt — optimization

instr —instruction selection & scheduling

reg — register allocation

run — runtime (i.e., when the compiled code is executed)
can’t — can’t always be done during compilation or execution

opt Remove an assignment to a variable because the variable is never referenced later in
the program.

scan Report that ‘# is not a legal character in a source program.

___instr___ Rearrange the order of instructions in the final code to reduce delays caused by the long
execution times of LOAD and STORE instructions.

__parse___ Report that a closing ‘}’ at the end of a method definition is missing.

sem In full Java, report that a reference to field x . a is illegal because the class (type) of
variable x does not contain a field named a.

can’t__ Report that a loop will never terminate once it has begun execution (i.e., produce an error
message that the program contains an “infinite” loop).

___opt___ Replace a multiplication by 2 with an add operation. (we also allowed instr for this, since it
can be done there, but the optimizer would be the more usual location)

___sem___ Report that a variable has not been declared.

___opt___ Report that a variable might not be initialized when it is used in a statement. (In a moment
of weakness we decided to allow sem as another answer for this. While it is true that Java
requires detecting this as part of the language semantics, it requires dataflow analysis to
do so, and that is normally part of the infrastructure in the optimization passes.)

__run___Inamethodcall x. £ (..), select the method f to be executed based on the actual class
(type) of the object referenced by x.
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Question 2. (16 points) Compiler hacking: a question of several parts. One of our customers wants to
use MiniJava to implement an operating system, but insists that this cannot be done unless Minilava
includes a do-while loop in the language to go with the existing while loop. We don’t know why this is
so essential, but we’ve decided to go ahead and add this new kind of loop to the language to make the
customer happy.

To do this we need to add one new production to the MiniJava Grammar:

”ou.n

Statement ::= “do” Statement “while Expression “)” “;

” Il( “«

The meaning of a do-while loop is the customary one: the Statement in the loop body is executed,
then the Expression (condition) following the keyword “while” is evaluated. If the Expression evaluates
to true, execution of the do-while loop repeats. If the Expression evaluates to false, execution of
the do-while loop terminates.

(a) (2 points) What new lexical tokens, if any, need to be added to the scanner and parser of our
MiniJava compiler to add this new do-while loop to the original MiniJava language? Just describe any
necessary changes; you don’t need to give JFlex or CUP specifications or code.

Add a new token for the “do” terminal symbol

(b) (3 points) What changes are needed to the Minilava abstract syntax tree (AST) data structures to add
this new do-while loop to MiniJava? Again, you do not need to give any Java or CUP code, just

describe the changes (what kinds of new or changed nodes, what children would they have, etc.).

Add a new “dowhile” node with two children: the loop body Statement and the loop condition
Expression.

Note: it would not be a good solution to use the existing while-loop node for this because the new
loop has different execution semantics.

(c) (3 points) What checks need to be performed to verify that there are no type compatibility or other
semantics errors for this new do-while loop?

Verify that the Expression following “while” has type Boolean.

(continued next page)
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Question 2. (cont.) (d) (8 points) Describe the x86-64 code shape for this new do-while loop that
would be generated by a MiniJava compiler. Your answer should be similar in format to the descriptions
we used in class for other language constructs. Be sure to show where the code to evaluate the loop
condition expression and the code for the statement in the loop body would appear in the generated
code for the loop. If needed, you should assume that the code generated for an expression will leave
the value of that expression in $rax, as we did in the Minilava project. Also, assume that the stack is
aligned on a 16-byte boundary at the beginning of the code sequence, and, if you change the size of the
stack, you need to be sure this alignment is preserved if the loop body statement or the loop condition
expression could contain a method call.

Use the Linux/gcc x86-64 assembler syntax for your code. If you need to make any assumptions about
code generated by the rest of the compiler you should state them.

The basic idea is pretty straightforward:

do_label:
<code for Statement>
<code to evaluate Expression into %rax>
testq %rax,%rax # test expression and jump if not 0 (i.e., not false)
jnz do_label

We gave a fair amount of latitude in how the conditional test was written (i.e., evaluate the
expression and jump if true to the top of the loop would be another reasonable answer).
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Question 3. (16 points) A bit of coding. This question concerns these classes from a Minilava program:

class Base {
int a;
int b;

public int f(int n) { b = n+l; return n+2; }

public int g(int n) { return a + n; }

public int setA(int v) { a = v; return a; }

public int setB(int v) { Db
}

class Sub extends Base {

v; return b; }

int c;

public int setC(int v) { c v; return c; }
public int g(int n) {
c = this.f (b);

return b + n;

Answer questions about this code on the next pages.

Ground rules for x86-64 code, needed in part of the question (same as for the Minilava project and
other x86-64 code, with the addition that $rbp must be used as the stack frame base register — it is not
optional for this question):

*  You must use the Linux/gcc assembly language, and must follow the x86-64 function call,
register, and stack frame conventions.

o Argument registers: $rdi, %rsi, %rdx, %rcx, %r8, %r9 inthatorder

o Called function must save and restore $rbx, %rbp, and $r12-%r15 if these are
used in the function

o Function result returned in $rax
%rsp must be aligned on a 16-byte boundary when a call instruction is executed

o %rbp must be used as the base pointer (frame pointer) register for this question, even
though this is not strictly required by the x86-64 ABI.

* Pointers and ints are 64 bits (8 bytes) each, as in Minilava.

* Your x86-64 code must implement all of the statements in the original method. You may not
rewrite the method into a different form that produces equivalent results (i.e., restructuring or
reordering the code). Other than that, you can use any reasonable x86-64 code that follows the
standard function call and register conventions — you do not need to mimic the code produced
by your MiniJava compiler.

* Please include brief comments in your code to help us understand what the code is supposed to
be doing (which will help us assign partial credit if it doesn’t do exactly what you intended.)

(You may detach this page from the exam if that is convenient.)
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Question 3. (cont.) (a) (6 points) When class Base was compiled, the compiler picked the following

layout for objects of type Base, and generated the following vtable for that class:

offset
+0
+8
+16

Object Layout
field

vtable pointer

a

b

BaseS$sS:

Vtable layout

.quad
.quad
.quad
.quad
.quad

0

BaseS$Sf
Base$g
Base$setA
Base$setB

# no superclass
#+8

#+16

#+24

H#+32

Below, show the object and vtable layouts for class Sub, in the same format used above for class Base.

Be sure to properly account for the fields and methods inherited from class Base in the object and

vtable layouts for class Sub.

offset
+0
+8
+16
+24

Object Layout
field

vtable pointer

a

b

C

Subs$s$:

Vtable layout

.quad
.quad
.quad
.quad
.quad
.quad

Base$$
BasesSf
Sub$g
Base$setA
BaseS$setB
SubS$setC

# superclass
#+8

#+16
#+24
#+32

# +40

Note: this is the only possible solution. The object layout needs to match the superclass for the
portions that are inherited, and method ordering in the vtable also needs to match the superclass,
with pointers to overriding methods in the proper places and with pointers to new subclass methods

added at the end.

(continued next page)
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Question 3. (cont.) (b) (10 points) Now translate method g (n) in class Sub into x86-64 assembly
language. You should use the standard runtime conventions for parameter passing (including the this
pointer), register usage, and so forth that we used in the MiniJava project, including using $rbp as a
stack frame pointer. Your translation should be consistent with the object and vtable layouts from part
(a) of the question on the previous page. The method source code is repeated below for convenience.

call instruction hints: Recall that if $rax contains a pointer to (i.e., the memory address of) the first
instruction in a method, then you can call the method by executing call *%rax. If $rax contains
the address of a vtable, we can call a method whose pointer is at offset d in that vtable by executing
call *d(%rax).

public int g(int n) {
c = this.f (b);
return b + n;

# on entry: %rdi = "this" pointer, %rsi=n
SubSg: # prologue

pushq %rbp # save old frame pointer (also aligns %rsp on 16-byte bndry)

movq %rsp,%rbp # set up new frame pointer

subq $16,%rsp # allocate space for 2 temporaries

movq %rdi,0(%rsp) # save "this" at %rsp (equiv. %rbp-16)

movq %rsi,8(%rsp) # save n at %rsp+8 (equiv. %rbp-8)
# call this.f(b) - "this" already in %rdi

movq 16(%rdi),%rsi # this.b is second argument

movq (%rdi),%rax # copy vtable ptr into %rax

call *8(%rax) # call f through vtable

movq 0(%rsp),%rdi # restore "this" (may have been clobbered by call)

movq %rax,24(%rdi) # store this.f(b) result in this.c

movq 16(%rdi),%rax # load this.b

addq 8(%rsp),%rax #addn

movq %rbp,%rsp # return - result already in %rax

popq %rbp

ret

In retrospect we should have allocated more points for this question and a few less for the previous
one. One big issue in the above code is that calling another method can potentially change all of the
argument and other transient registers, so we need to save and restore this and n. Also, the call of
this. £ must go through the vtable since it could potentially be overridden in a subclass of Sub. We
can’t make any assumptions about method is called or what variables it might or might not change.
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Question 4. (16 points) Register allocation. Considering the following code:

a = read();

b = read();

C =a+ b;

if (a < b) {
d=Db - 1;
e =d * 2;

} else {
e =c - a;

}

print(e);

On the next page write your answer to the following questions. You can remove this page from the

exam for convenience if you wish.

(a) (9 points) Draw the interference graph for the variables in this code. You are not required to draw

the control flow graph, but it might be useful to sketch that to help find the solution and to leave clues

in case we need to assign partial credit.

(b) (7 points) Give an assignment of variables to registers using the minimum number of registers

possible, based on the information in the interference graph. You do not need to go through the steps

of the graph coloring algorithm explicitly, although that may be helpful as a guide to assigning registers.

If there is more than one possible answer that uses the minimum number of registers, any of them will

be fine. Use R1, R2, R3, ... for the register names.

write
your
answer
on
the

next
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Question 4. (cont.) Draw the interference graph and write your register assignments below the graph.

Three registers are needed. a, b, and c each need to be in a separate register. d and e can occupy any
of the registers since they don’t interfere with any other variables.

So, one possibilityis R1=a,d,e; R2=b; R3 =c.
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Question 5. (16 points) First things first. We’d like to use forward list scheduling to pick a good order
for executing a sequence of instructions. For this problem, assume that we’re using the same
hypothetical machine that was presented in lecture and in the textbook examples. Instructions are
assumed to take the following number of cycles:

Operation Cycles
LOAD 3
STORE 3
ADD 1
MULT 2

Given the assignment statement x= (a+b) + (c*d) ;, our compiler’s instruction selection phase
initially emits the following sequence of instructions:

LOAD ril<-a
LOAD r2<-b
ADD rl<-rl, r2
LOAD r3<-c
LOAD r4<-d

MULT r3<-r3,r4d
ADD rl<-rl,r3
STORE x<-rl

Sm ™m0 a0 oW

Answer the following questions on the next page. You can remove this page for convenience if you like.

(a) (7 points) Draw the precedence graph showing the dependencies between these instructions. Label
each node (instruction) in the graph with the letter identifying the instruction (a-h) and it’s latency — the
number of cycles between the beginning of that instruction and the end of the graph on the shortest
possible path that respects the dependencies.

(b) (7 points) Rewrite the instructions in the order they would be chosen by forward list scheduling (i.e.,
choosing on each cycle an instruction that is not dependent on any other instruction that has not yet
been issued or is still executing). If there is a tie at any step when picking the best instruction to
schedule next, pick one of them arbitrarily. Label each instruction with its letter from the original
sequence above and the cycle number on which it begins execution. The first instruction begins on
cycle 1.

You do not need to show your bookkeeping or trace the algorithm as done in class, although if you leave
these clues about what you did, it could be helpful if we need to figure out how to assign partial credit.

(c) (2 points) At the bottom of the next page, write down the number of cycles needed to execute the
instructions in the original order and the number needed by the new schedule.
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Question 5. (cont.) (a) and (b) Draw the precedence diagram and write the new instruction schedule
(sequence) below. Then fill in part (c) at the bottom of the page.

OO ONNOL
N ’
5 6

d LOAD r3<-c
e LOAD r4<-d
a LOAD ril<-a
b LOAD r2<-b
f MULT r3<-r3,r4

(can’t start anything this cycle)
¢ ADD rl<-rl, r2

g ADD rl1<-rlr3

h STORE x<-rl

© XN U e WDNRE

Instructions d and e can be issued in either order, and a and b can be in either order. But d and e need
to go before the other loads so the MULT can be started before the first ADD.

(c) Fill in: Number of cycles needed to completely execute all instructions in the original schedule _15_

Number of cycles needed to completely execute all instructions in the new schedule _11_
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Question 6. (16 points) SSA. This Java function computes and returns the n" Fibonacci number.

public static int fib(int n) {
int fp, fk, k, temp;
if (n < 2)

return n;

fp = 0; // £ib (0
fk = 1; // fib(1)
k = 1; // fk = fib (k)
while (k < n) {

temp = fp;

fp = fk;

fk = fk + temp;
k =%k + 1;

}

return fk;

On the next page, draw a control flow graph for this function (nodes = basic blocks, edges = possible
control flow), using Static Single Assignment (SSA) form as described in section. You should include ¢-
functions where needed to merge different versions of the same variable. For full credit you should only
include necessary ¢-functions and not have extraneous ones scattered everywhere, but we will give
generous partial credit if all of the necessary ¢-functions are included and there are a minimal number
of extra ones.

Hint: it might be easiest to sketch the flow graph first without converting it into SSA, and then add the
needed variable version numbers and ¢-functions to get the final answer.
Write
your
answer
on the

next

page.

You can remove this page from the exam if you wish.
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Question 6. (cont.) Write your answer here.

npg<2

\

v return ng

fpo=0
fk0=1
k0=1

v
fp2 = O(fpo,fp1)
sz = q)(fko,fk]_)
ka2 = ®(ko,k)

kz < Ng

return fk,

\ 4

temp, = fp;

fp1 = fk,

fky = fk, + tempyg
k1 = kz +1
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Question 7. (10 points, 5 each) A few short questions about memory management.

(a) In an automatic garbage collector for Java (or for most other languages), figuring out what storage is
reachable, and therefore must be live, starts by examining the contents of the root set. What exactly is
the root set?

The root set is the collection of all directly known variables in the program that could potentially refer
to heap objects. These include all global variables, all static variables in classes or other scopes, and
all variables in active functions, including local variables in stack frames and temporary variables
stored in registers or other storage locations.

(b) A garbage collector for Java can be precise or accurate, meaning that it can identify all previously
allocated memory that is no longer in use (garbage) and automatically reclaim it. Supposedly this
cannot be done for languages like C or C++, so the best that can be done for those languages is to
implement a conservative or approximate garbage collector. What is it about C/C++ that prevents us
from implementing a precise garbage collector, and what does it mean to have a conservative collector?
(Briefly please)

A collector for Java has precise information about types and locations of all heap objects because it is
impossible to allocate or create a pointer to a heap object without going through the memory
manager.

A C/C++ program on the other hand can create pointers to arbitrary locations in memory, including
pointers into the heap that don’t refer to locations of objects allocated by the memory manager. Also,
given a pointer, we do not have guarantees about the type of the object that it references. Any
attempt to automatically collect storage in this environment has to treat any bit pattern that
potentially could be used as a pointer into heap storage as if it were one.

Have a great spring break!
The CSE 401 staff
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