Question 1. (10 points) For each of the following tasks, indicate the earliest stage of the compiler that
can always perform that task or detect the situation. Assume the compiler is a conventional one that
generates native code (x86, MIPS, etc.) for a language like C++ or Java. Use the following abbreviations
to identify the stages:

scan —scanner

parse — parser

sem — semantics/type check

opt — optimization

instr —instruction selection & scheduling

reg — register allocation

run — runtime (i.e., when the compiled code is executed)
can’t — can’t be done during compilation or execution

scan A comment beginning with /* terminates with */ before the end of the file

sem A variable is declared at most once in a scope (function, class, etc.)
reg Add code to temporarily store a value when there aren’t enough registers to hold all live

values at a given point in the program.

opt Replace array subscripting (A 1]=0; 1++)and a test (i<n) with pointer arithmetic
(*p++=0) and a pointer test (p<&al[n]).

sem Warn the programmer that the declaration of a variable in a subclass hides (shadows) the
declaration of the same variable in a superclass.

parse _ Detect that there is an extra “el se stmt” clause in the program that is not associated with
a previous “i ¥’

run Detect that in an array reference a[k], the subscript K is out of bounds (i.e., in Java where
bounds must be checked)

can’t Guarantee that a particular pointer (reference) variable p will never be NULL.

sem Guarantee that in a pointer reference p . X (p—>X in C/C++) that the value referenced by p
will have a field X, assuming that p is not NULL.

instr Use x86 addressing modes to calculate x*5 with leal (%eax,%eax,4),%eax.

CSE 401 Final, December 16, 2010 Sample Solution Page 1 of 11

Question 2. (34 points) Runtime data structures and code. Suppose we have the following two Java
classes representing characters in a simulation and a third class with a small main program:

public class Character {
int x, y; // coordinates
int age;

void move(int dx, int dy) {
X =X +dx; y =Yy + dy;
¥
int getX() { return x; }
int getY(Q) { return y; }
int getAge() { return age; }
¥

public class EIT extends Character {
int weight;
int age;

void setAge(int years) { age = years; }
int getAge() { return age; }
}

public class Main {
public static void main(Sring[] useless) {
Character santa = new Character();
Character bernie = new EIT();

santa.move(12, 24);
((EITP)Bernie).setAge(42);

}

(a) (8 points) Runtime data structures. On the next page draw a diagram of the runtime data structures
for this program after the variable declarations in method main have been executed.

Show the variables in main, the objects they refer to, and how the objects and their fields are organized
in memory. Your diagram should show all of the fields in the objects and should assign numeric offsets
to each field (0, 4, 8, ...) for use in later parts of this question. You do not need to show the details of
main’s stack frame. Just show pointer variables that refer to the objects.

Then add to your diagram any mechanisms needed to support dynamic method dispatch in Java (e.g.,
vtables). You should ignore constructors. The vtable diagram(s) should also show the numeric offsets of
the various pointers in the table(s) (0, 4, 8, ...).

(You may remove this page from the exam for reference if you wish.)

CSE 401 Final, December 16, 2010 Sample Solution Page 2 of 11

Question 2. (cont). (a) Draw your diagram below, including variable names, objects, vtables, field

names, and field offsets in objects and vtables.

R Character

santa B

bernie

0 vtbl —_CML vtbl
4 X 0 parent=0
8 y 4 | CharacterSmove
12 age 8 | Character$getX
12 | CharacterSgetY
16 | CharacterSgetAge
Elf
0 vtbl —w:’ vtbl
4 X 0 parent
8 y 4 | CharacterSmove
12 age 8 | Character$getX
16 | weight 12 | Character$getY
20 age 16 ElfSgetAge
20 ElfSsetAge

e

Offsets in the objects and vtables could be different, although most people wound up with these
layouts. However, the layout in the common parts of the Character and Elf objects and vtables must

match.

Strictly speaking, the vtable entries are pointers to function code stored elsewhere. That’s awful
tedious to draw using a computer, so labels are used in the above solution, and were ok on the exam

as well.

(continued on next page)

CSE 401 Final, December 16, 2010

Sample Solution

Page 3 of 11

Question 2. (cont.) (b) (7 points) Stack frames. Suppose now that we start executing method main,
and continue until we reach the body of method move after executing santa.move(12,24). Draw
a picture that shows the stack frames of methods main and move right after entering move and after
executing the function prologue (allocating the stack frame and adjusting the base pointer), but before
executing the first assignment statement in the body of move. Draw labeled arrows showing where the
registers ebp (frame pointer) and esp (stack pointer) point after executing the prologue code in move.
Your picture should show the variables and parameters of both methods and their numeric offsets in
each stack frame. (Notice that there will be two sets of offset numbers — one for the stack frame of

main and one for the stack frame of move.)

High addresses

+8 useless

+4 return address

0 saved ebp main

-4 santa

-8 bernie
+12 dy (24)

+8 dx (12) move

+4 return address

+0 saved ebp <- esp, ebp

Note: The parameters to function move are not anonymous — they have names as well as values.
Many people omitted the names from their solution. We let that go while grading and didn’t deduct

for it.

CSE 401 Final, December 16, 2010 Sample Solution Page 4 of 11

Question 2. (cont.) (c) (9 points) Method call. Now suppose we continue execution and return to the
main method after method move finishes. The next line of code is ((EIT)bernie) .setAge(42).
Translate this line of code into x86 assembly language as it would be compiled in main. You should
assume that the stack frame for method main is organized as you’ve drawn it in the previous part of
this question, and that the object and vtable layouts are as drawn in part (a). You should use the
standard calling conventions described in class, and use register ecX as the “this” pointer. You may
assume that no code is generated to check the (EIF) cast at runtime. Any reasonable x86 code that
obeys the regular calling conventions is ok — you don’t need to reproduce the code that would be
generated by your compiler. You should use the GNU/AT&T x86 assembly language for your code.

movl -8(%ebp) ,%ecx move obj ptr to ecx

pushl $42 push argument

movl (%ecx) ,%heax copy vtbl ptr to eax

call *20(%eax) indirect call to setAge

addl $4 ,%esp pop arguments (popl ok also)

(d) (10 points) Method implementation. Last part(!). Give a x86 translation of method setAge from
class EIF. Your code should include all of the code for method setAge, including the function
prologue and return. Since this is a void method there is no return value required to be placed in eax
when the function exits. Include the usual method prologue and epilogue code to save/restore the
frame pointer even though there may be other ways to write the code without it.

Elf$setAge:
pushl %ebp usual prologue
movl %esp,%ebp (no locals needed)
movl 8(%ebp) ,%eax copy argument to eax
movl %eax, 20(%ecx) copy to object
movl %ebp,%esp return
popl %ebp
ret

The final movl/popl could be replaced by a leave instruction.

Several solutions tried to use a single movl 8(%ebp) ,20(%ecx) instruction to copy the data.
That can’t be done since a single x86 instruction can only have one address specification.

CSE 401 Final, December 16, 2010 Sample Solution Page 5 of 11

Question 3. (32 points) Compiler hacking: another question of many parts.
We would like to add a new kind of counting loop to our MiniJava compiler. The syntax is
foridin expl to exp2 do stmt

The idea is that stmt is to be executed repeatedly, with variable id having successive values exp1,
expl+l, expl+2, ..., exp2 each time that stmt is executed. More specifically the loop is executed as
follows. First, id is assigned the value expl1. Then the value of id is tested to see if it is less than or equal
to exp2. Ifitis, the loop body, stmt, is executed and then the value of id is incremented by 1. This test-
execute-increment sequence is repeated until the test becomes false because the value of id exceeds
exp2.

The variable id must be declared previously in the function and must have type int. It must be a local
variable in the function containing the loop; it may not be a global or class instance variable. The two
expressions expl and exp2 are evaluated only once before the initial assignment to id and are not
reevaluated during execution of the loop. Further, the loop body stmt may not contain any assignments
to the variable id. (In other words, having evaluated expl and exp2 at the start of the loop, we can tell
exactly how many times the loop will execute and the sequence of values that id will assume. Execution
of the loop body is not allowed to change that sequence — although, of course, it could return from the
function, throw an exception, or otherwise terminate abnormally.)

Answer the rest of this question on the next few pages. You can remove this page and use it for
reference as you work on the question. You may also find the other pages handed out along with the
test containing the MiniJava grammar and some of the AST class declarations to be useful.

Write
Your
Answers
On
The
Next
Few

Pages

(continued next page)

CSE 401 Final, December 16, 2010 Sample Solution Page 6 of 11

Question 3. (cont.) (a) (3 points) What new tokens would need to be added to the scanner and parser
of our MiniJava compiler to add the new For statement to the original MiniJava grammar? Just list the
tokens; you don’t need to give a JFlex or CUP specification for them.

FOR IN TO DO

(FOR is not a token in regular minijava)

(b) (7 points) Complete the following class to define a new AST node class for this new for statement.
You only need to define instance variables and the constructor. Assume that all appropriate package
and import declarations are supplied, and don’t worry about visitor code.

public class ForLoop extends Statement {
// add instance variables below

Identifier id;
Exp expl, exp2
Statement stmt;

// constructor — add parameters and body

public ForLoop (_ldentifier id, Exp expl, Exp exp2, Statement stmt,
int line nbr_){

super(line_nbr);

this.id = i1d;

this.expl = expl;
this.exp2 = exp2;
this.stmt = stmt;

CSE 401 Final, December 16, 2010 Sample Solution Page 7 of 11

Question 3. (cont.) (c) (6 points) Complete the CUP specification below to define a new production for
the For statement and the associated semantic action(s) needed to parse for and insert an
appropriate FOrLoop node (as defined in part (b)) into the AST. We have added the necessary
additional code to the parser rule for Statement as shown below.

Statement :

| ForStatement:s {: RESULT = s; :}

ForStatement --= | FOR Identifier:id IN Exp:expl TO Exp:exp2
DO Statement:stmt

{: RESULT = new ForLoop(id,expl,exp2,stmt,idleft); :}

(d) (6 points) Describe the checks that would be needed in the semantics/type-checking part of the
compiler to verify that a for statement is legal. You do not need to give code for a visitor method or
anything like that — just describe what rules (if any) need to be checked.

e Verify id has type int

e Verify id is declared locally in the function scope
e Verify that expl and exp2 have type int

e Verify that stmt contains no assignments to id

CSE 401 Final, December 16, 2010 Sample Solution Page 8 of 11

Question 3. (cont.) (e) (10 points) Describe the code that would be generated for the new loop
statement. You need to show the instructions, labels, and any other assembly language code that need
to be generated for the lo0p statement itself, and show where the generated code for exp1, exp2, the
assignment(s) to id, and stmt would appear in the code sequence for this new loop. If you need to
create any temporary variables or otherwise save values somewhere, be sure it is clear what you are
doing and where the values are stored.

There are obviously many solutions. This one is simple with no optimizations.

We need to allocate temporary space for expl while evaluating exp2, and we need to allocate a
temporary to hold exp2 throughout the loop. Here we push expl on the stack and assume the
compiler has allocated an anonymous local variable to hold exp2.

(Note that expl and exp2 need to be evaluated in order and before the assignment to the variable to
get something like for i1 In 1+1 to 1+10 <stmt> to execute properly. We weren’t quite so
strict in the grading if you didn’t get this exactly right. Also note that the identifier is a regular
variable and its current value needs to be stored properly since it may be referenced by code in the
loop body. It cannot remain in a register throughout the loop. Also, remember that the code in the
loop body may use registers, so the values of the variable or exp2 cannot be stored in, for example,
edx.)

<code for exp1>

pushl %eax save expl on stack
<code for exp2>
movl %eax,offset,n,(%ebp) store exp2 in compiler temporary
popl %eax assign exp1 to variable
movl %eax,offsetiy(%ebp)

loop_label:
movl offsetiy(%ebp),%eax compare id to exp2
cmpl %eax,offsetm,(%ebp)
jl loop_exit exit if tmp2 less than id
<code for stmt>
incl offsetiy(%ebp) id++
j loop_label

loop_exit:

CSE 401 Final, December 16, 2010 Sample Solution Page 9 of 11

Question 4. (12 points) Register allocation. Considering the following C function:
int f(int a, int b) {

int k, n;
k = a;
n=20;

while (k < b) {
n=n+ k;
k =k +1;
}

return n;

(a) Draw the interference graph for the variables and parameters of this function. You are not required
to draw the control flow graph, but it could be useful to sketch it out to help with the solution and to
leave clues about what might have happened if the graph is not quite correct.

(b) Give an assignment of (groups of) variables to registers using the minimum number of registers
possible, based on the information in the interference graph. You do not need to go through the steps
of the graph coloring algorithm explicitly, although it may be helpful as a guide to assigning registers. If
there is more than one possible answer that uses the minimum number of registers, any of them will be
fine. Use R1, R2, R3, ... for the register names.

Three registers are needed. b, n, and k each are in separate registers. a can be allocated in the same

register as either k or n.

CSE 401 Final, December 16, 2010 Sample Solution Page 10 of 11

Question 5. (12 points) A little optimization. For this question we’d like to perform local constant

propagation and folding, followed by dead code elimination. We have a C function with the following

array declaration:

double A[10][10];

// 10x10 array of 8-byte doubles

The first column of the table below gives the three-address code generated for this assignment

statement:

a[3][5] = a[3][5] +x;

(a) Fill in the second column with the statements from the first column after they have been modified by

local constant propagation and folding (compile-time arithmetic).

(b) In the third colum, check the box “deleted” if the statement would be deleted by dead code
elimination after performing the constant propagation/folding optimizations from part (a).

Original Code

After constant propagation & folding

“X” if deleted as dead code

t1 = *(fp+xoffset) //x

t1 = *(fp+xoffset)

t2=3 t2=3 X
t3=1t2*10 t3=30 X
t4=1t3+5 t4 = 35 X
t5=t4*8 t5 =280 X
t6 =fp +1t5 t6 = fp + 280

t7 = *(t6+aoffset) // A[3][5] | t7 = *(t6+aoffset)

t8 =t1 +t7 // A[3][5]+x | t8 =t1 +t7

t9=3 t9=3 X
t10=t9 * 10 t10=30 X
t11=t10+5 t11=35 X
t12=t11*8 t12 =280 X
t13 = fp + t12 t13 = fp + 280

*(t13+aoffset) = t8

*(t13+aoffset) = t8

CSE 401 Final, December 16, 2010

Sample Solution

Page 11 of 11

