Adventures in

Dataflow Analysis

CSE 401 Section 9-ish
Aaron Johnston & Nate Yazdani
Announcements

- Compiler Additions due next Thursday, 5/31
 - Involves revisiting all parts of the compiler
Announcements

- Compiler Additions due next Thursday, 5/31
 - Involves revisiting all parts of the compiler

- Final Report due the following Saturday, 6/2
 - Ideally, also involves revisiting all parts of the compiler
Review of Optimizations

Source Code → Front End → IR → Back End → Target Code

Scanner → Parser → Semantic Analysis → Optimization → Code Generation
Review of Optimizations

Peephole
Local
Intraprocedural / Global
Interprocedural
Review of Optimizations

- Peephole: A few Instructions
- Local
- Intraprocedural / Global
- Interprocedural
Review of Optimizations

Peephole A few Instructions
Local A Basic Block
Intraprocedural / Global
Interprocedural
Review of Optimizations

Peephole: A few Instructions
Local: A Basic Block
Intraprocedural / Global: A Function/Method
Interprocedural
Review of Optimizations

Peephole: A few Instructions
Local: A Basic Block
Intraprocedural / Global: A Function/Method
Interprocedural: A Program
Overview of Dataflow Analysis

- A framework for exposing properties about programs
- Operates using sets of “facts”
Overview of Dataflow Analysis

- A framework for exposing properties about programs
- Operates using sets of “facts”
- Just the initial discovery phase
 - Changes can then be made to optimize based on the analysis
Overview of Dataflow Analysis

- Basic Set Definitions for a Basic Block b:
 - $\text{IN}(b)$: facts true on entry to b
 - $\text{OUT}(b)$: facts true on exit from b
 - $\text{GEN}(b)$: facts created (and not killed) in b
 - $\text{KILL}(b)$: facts killed in b
1 (a) & (b)
Equations for Reaching Definitions

- Sets:
 - \(\text{DEFOUT}(b) \): set of definitions in \(b \) that reach the end of \(b \) (i.e., not subsequently redefined in \(b \))
 - \(\text{SURVIVED}(b) \): set of all definitions not obscured by a definition in \(b \)
 - \(\text{REACHES}(b) \): set of definitions that reach \(b \)

- Equations:
 - \(\text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup \bigcap_{p \in \text{preds}(b)} (\text{REACHES}(p) \cap \text{SURVIVED}(p)) \)
Overview of Dataflow Analysis

- Basic Set Definitions for a Basic Block \(b \):
 - \(\text{IN}(b) \): facts true on entry to \(b \)
 - \(\text{OUT}(b) \): facts true on exit from \(b \)
 - \(\text{GEN}(b) \): facts created (and not killed) in \(b \)
 - \(\text{KILL}(b) \): facts killed in \(b \)

\[
\text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))
\]
1 (c) & (d)
<table>
<thead>
<tr>
<th>Block</th>
<th>GEN</th>
<th>KILL</th>
<th>IN (1)</th>
<th>OUT (1)</th>
<th>IN (2)</th>
<th>OUT (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>L0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>L2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
L0: a = 0
L1: b = a + 1
L2: c = c + b
L3: a = b * 2
L4: if a < N goto L1
L5: return c
L0: \(a = 0 \)
L1: \(b = a + 1 \)
L2: \(c = c + b \)
L3: \(a = b * 2 \)
L4: \(\text{if } a < N \text{ goto L1} \)
L5: return \(c \)

<table>
<thead>
<tr>
<th>Block</th>
<th>GEN</th>
<th>KILL</th>
<th>IN (1)</th>
<th>OUT (1)</th>
<th>IN (2)</th>
<th>OUT (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>L0</td>
<td>L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>L1</td>
<td></td>
<td></td>
<td>L0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>L2</td>
<td></td>
<td></td>
<td>L0, L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>L3</td>
<td>L0</td>
<td></td>
<td>L0, L1, L2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td></td>
<td></td>
<td>L1, L2, L3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td></td>
<td></td>
<td>L1, L2, L3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
L0: \(a = 0 \)
L1: \(b = a + 1 \)
L2: \(c = c + b \)
L3: \(a = b \times 2 \)
L4: \(\text{if } a < N \text{ goto L1} \)
L5: \(\text{return } c \)

<table>
<thead>
<tr>
<th>Block</th>
<th>GEN</th>
<th>KILL</th>
<th>IN (1)</th>
<th>OUT (1)</th>
<th>IN (2)</th>
<th>OUT (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>L0</td>
<td>L3</td>
<td></td>
<td>L0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>L1</td>
<td></td>
<td>L0</td>
<td>L0, L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>L2</td>
<td></td>
<td>L0, L1</td>
<td>L0, L1, L2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>L3</td>
<td>L0</td>
<td>L0, L1, L2</td>
<td>L1, L2, L3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td></td>
<td>L1, L2, L3</td>
<td>L1, L2, L3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td></td>
<td>L1, L2, L3</td>
<td>L1, L2, L3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
L0: \(a = 0 \)
L1: \(b = a + 1 \)
L2: \(c = c + b \)
L3: \(a = b \times 2 \)
L4: if \(a < N \) goto L1
L5: return \(c \)

<table>
<thead>
<tr>
<th>Block</th>
<th>GEN</th>
<th>KILL</th>
<th>IN (1)</th>
<th>OUT (1)</th>
<th>IN (2)</th>
<th>OUT (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>L0</td>
<td>L3</td>
<td>L0</td>
<td>L0</td>
<td>L0</td>
<td>L0</td>
</tr>
<tr>
<td>L1</td>
<td>L1</td>
<td></td>
<td>L0</td>
<td>L0, L1</td>
<td>L0, L1, L2, L3</td>
<td>L0, L1, L2, L3</td>
</tr>
<tr>
<td>L2</td>
<td>L2</td>
<td></td>
<td>L0, L1</td>
<td>L0, L1, L2</td>
<td>L0, L1, L2, L3</td>
<td>L0, L1, L2, L3</td>
</tr>
<tr>
<td>L3</td>
<td>L3</td>
<td>L0</td>
<td>L0, L1, L2</td>
<td>L1, L2, L3</td>
<td>L0, L1, L2, L3</td>
<td>L1, L2, L3</td>
</tr>
<tr>
<td>L4</td>
<td>L1, L2, L3</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>L1, L2, L3</td>
<td></td>
</tr>
</tbody>
</table>
L0: a = 0
L1: b = a + 1
L2: c = c + b
L3: a = b * 2
L4: if a < N goto L1
L5: return c

<table>
<thead>
<tr>
<th>Block</th>
<th>GEN</th>
<th>KILL</th>
<th>IN (1)</th>
<th>OUT (1)</th>
<th>IN (2)</th>
<th>OUT (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>L0</td>
<td>L3</td>
<td>L0</td>
<td>L0</td>
<td>L0</td>
<td>L0</td>
</tr>
<tr>
<td>L1</td>
<td>L1</td>
<td></td>
<td>L0</td>
<td>L0, L1</td>
<td>L0, L1, L2, L3</td>
<td>L0, L1, L2, L3</td>
</tr>
<tr>
<td>L2</td>
<td>L2</td>
<td></td>
<td>L0, L1</td>
<td>L0, L1, L2</td>
<td>L0, L1, L2, L3</td>
<td>L0, L1, L2, L3</td>
</tr>
<tr>
<td>L3</td>
<td>L3</td>
<td>L0</td>
<td>L0, L1, L2</td>
<td>L1, L2, L3</td>
<td>L0, L1, L2, L3</td>
<td>L1, L2, L3</td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td></td>
<td>L1, L2, L3</td>
<td>L1, L2, L3</td>
<td>L1, L2, L3</td>
<td>L1, L2, L3</td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td></td>
<td>L1, L2, L3</td>
<td>L1, L2, L3</td>
<td>L1, L2, L3</td>
<td>L1, L2, L3</td>
</tr>
</tbody>
</table>

Convergence!
2 (a) & (b)
1.
 \[Z = 4 \times B \]
 \[Y = A + C \]

2.
 \[Y = 5 \]
 \[Z = Y + B \]

3.
 \[X = A \times B \]
 \[Z = Y + X \]

4.
 \[X = A \times B \]
 \[Z = Y + X \]

5.
 \[Y = 3 \times B \]
 \[Z = A + B \]

6.
 \[Y = 3 \times B \]
 \[X = A \times B \]

7.
 \[Y = 2 \times B \]
1.
 \[Z = 4 \times B \]
 \[Y = A + C \]
2.
 \[Y = 5 \]
 \[Z = Y + B \]
3.
 \[X = A \times B \]
 \[Z = Y + X \]
 \[T_1 = 3 \times B \]
4.
 \[X = A \times B \]
 \[Z = Y + X \]
 \[T_2 = 2 \times B \]
5.
 \[Y = T_1 \]
 \[Z = A + B \]
6.
 \[Y = T_1 \]
 \[X = A \times B \]
7.
 \[Y = T_2 \]