CSE 401/M501 — Compilers

Section 2: Project Infrastructure
Nate Yazdani & Aaron Johnston
Spring 2018

UW CSE 401/M501 Spring 2018

2-1



Welcome

* The guy talking is Nate
— O.H. 2-3pm Mon./Fri. in CSE 220

e The other fellow is Aaron

— O.H. 1:30-2:30pm Tue. in CSE 021 and 12-1pm Thurs. in
CSE 220

 We'll be leading most sections this quarter

UW CSE 401/M501 Spring 2018

2-2



Agenda

* Quick refresher on git revision control

— See handouts/references on website for more
* Walk through the starter code

* Practice with ambiguity of formal grammars

UW CSE 401/M501 Spring 2018

2-3



Git Review — SSH Keys

 An SSH key lets a git server remember a specific
client computer

e If git asks for a password to push or pull, you need
to setup an SSH key

e Typically just need to do the following:
— ssh-keygen -t rsa -C "you@cs.washington.edu" -b 4096

— Copy ~/.ssh/id_rsa.pub into your GitLab account

* Full setup and troubleshooting instructions:
https://gitlab.cs.washington.edu/help/ssh/README

UW CSE 401/M501 Spring 2018 2-4


https://gitlab.cs.washington.edu/help/ssh/README

Git Review — Revision Control

* The “official” repo (a.k.a., the remote) lives on
the CSE GitLab server

* Cloning a repo gives you a private, local copy

 Committing saves local changes into the local
repo’s revision history

* Push to send local commits to remote repo
* Pull to bring remote commits to local repo
 Beware merge conflicts — pull frequently

UW CSE 401/M501 Spring 2018 2-5



Git Review — The Team Repository

* Each project pair is given a repo to collaborate
— Starts out empty, unlike CSE 331, 333, etc.
— Tagging is how you submit project phases, like CSE 331

* One person from each pair should download the
starter code and push it to the shared repo

— Then the other person pulls to get the starter code

UW CSE 401/M501 Spring 2018 2-6



MiniJava Project — Getting Started

* On course website, go to “Compiler project” =
“Starter code” (at top) to grab starter code

— Or just pull your team repo, if already pushed ©

* One person from each pair should download the
starter code and push it to their team’s repo

— Then the other person pulls to get the starter code

* Everybody have a local copy of the starter code?

UW CSE 401/M501 Spring 2018

2-7



MiniJava Project — Walk Through

Together, we’re going to do the following:
Unarchive starter code and push to repo*
Try out the demo scanner

Get to know the CUP/JFlex infrastructure

Run a main program as in the scanner phase

A S

Try making some changes to lexical spec.

* if applicable

UW CSE 401/M501 Spring 2018

2-8



Ambiguity of a Formal Grammar

e Recall from lecture:

— A formal grammar is ambiguous when a sentence in
the language has multiple leftmost (or rightmost)
derivations (i.e., multiple parse trees).

* Now some exercises selected from a past exam...

UW CSE 401/M501 Spring 2018 2-9



Ambiguity — 4.a (15wi midterm)

Question 4. Context-free grammars (14 points) Consider the following syntax for
expressions involving addition and field selection:

expr ;.= expr + field

expr .= field
field ::==expr . id
field .= 1id

(a) (8 points) Show that this grammar is ambiguous.

UW CSE 401/M501 Spring 2018 2-10



Ambiguity —4.b (15wi midterm)

Question 4. Context-free grammars (14 points) Consider the following syntax for
expressions involving addition and field selection:

expr .= expr + field

expr .= field
field :==expr . id
field == id

(b) (6 points) Give an unambiguous context-free grammar that fixes the problem(s) with
the grammar in part (a) and generates expressions with id, field selection and addition.
As in Java, field selection should have higher precedence than addition and both field
selection and addition should be left-associative (i.e., a+b+c means (a+b)+c).

UW CSE 401/M501 Spring 2018 2-11



Ambiguity — 4.a solution (example)

(a) (8 points) Show that this grammar i1s ambiguous.

Here are two derivations of id+id.id:

expr

expr

field

id id

UW CSE 401/M501 Spring 2018

expr

-+

expr

field

field

id . id

2-12



Ambiguity — 4.b solution (example)

(b) (6 points) Give an unambiguous context-free grammar that fixes the problem(s) with
the grammar 1n part (a) and generates expressions with id, field selection and addition.
As in Java, field selection should have higher precedence than addition and both field
selection and addition should be left-associative (i.e., at+tb+c means (a+b)+c).

The problem is in the first rule for field, which creates an ambiguous precedence.
Here is a reasonably simple fix.

expr .:= expr + field

expr ::= field
field ::= field . id
field ::=id

UW CSE 401/M501 Spring 2018 2-13



Ambiguity in Practice

* Comes down to the existence of multiple, legal
derivation alternatives for some sentences

— e.g., do we pick expr ::= field or expr ;= expr + field?
* Frequent cause of shift/reduce and reduce/reduce

conflicts
* Typically just need to incorporate precedence and/or

associativity

UW CSE 401/M501 Spring 2018 2-14



