CSE 401/M501 – Compilers

Dataflow Analysis

Hal Perkins

Spring 2018
Agenda

• Dataflow analysis: a framework and algorithm for many common compiler analyses
• Initial example: dataflow analysis for common subexpression elimination
• Other analysis problems that work in the same framework
• Some of these are the same optimizations we’ve seen, but more formally and with details
Common Subexpression Elimination

• Goal: use dataflow analysis to find common subexpressions

• Idea: calculate available expressions at beginning of each basic block

• Avoid re-evaluation of an available expression – use a copy operation
 – Simple inside a single block; more complex dataflow analysis used across blocks
“Available” and Other Terms

- An expression e is **defined** at point p in the CFG if its value is computed at p
 - Sometimes called *definition site*
- An expression e is **killed** at point p if one of its operands is defined at p
 - Sometimes called *kill site*
- An expression e is **available** at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p
Available Expression Sets

• To compute available expressions, for each block b, define

 – AVAIL(b) – the set of expressions available on entry to b

 – NKILL(b) – the set of expressions not killed in b
 • i.e., all expressions in the program except for those killed in b

 – DEF(b) – the set of expressions defined in b and not subsequently killed in b
Computing Available Expressions

• AVAIL(b) is the set
 \[AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]
 – preds(b) is the set of b’s predecessors in the CFG
 – The set of expressions available on entry to b is the set of expressions that were available at the end of every predecessor basic block x
 – The expressions available on exit from block b are those defined in b or available on entry to b and not killed in b

• This gives a system of simultaneous equations – a dataflow problem
Computing Available Expressions

• Big Picture
 – Build control-flow graph
 – Calculate initial local data – DEF(b) and NKILL(b)
 • This only needs to be done once for each block b and depends only on the statements in b
 – Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
 • Another fixed-point algorithm
Computing DEF and NKILL (1)

- For each block b with operations o_1, o_2, \ldots, o_k

 $KILLED = \emptyset$ // killed variables, not expressions

 $DEF(b) = \emptyset$

 for $i = k$ to 1 // note: working back to front

 assume o_i is "$x = y + z$"

 add x to $KILLED$

 if ($y \notin KILLED$ and $z \notin KILLED$)

 add "$y + z$" to $DEF(b)$

...
Computing DEF and NKILL (2)

• After computing DEF and KILLED for a block b, compute set of all expressions in the program not killed in b

 $$NKILL(b) = \{ \text{all expressions} \}$$

 for each expression e

 for each variable $v \in e$

 if $v \in \text{KILLED}$ then

 $$NKILL(b) = NKILL(b) - e$$
Example: Compute DEF and NKILL

DEF = \{ 2*a, 2*b \}
NKILL = exprs w/o j or k

DEF = \{ 5*n \}
NKILL = exprs w/o c

DEF = \{ 2*a \}
NKILL = exprs w/o h

DEF = \{ 5*n, c+d \}
NKILL = exprs w/o m, x, b
Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

Worklist = \{ all blocks \ b_i \}
while (Worklist ≠ ∅)
 remove a block b from Worklist
 recompute AVAIL(b)
 if AVAIL(b) changed
 Worklist = Worklist ∪ successors(b)
Example: Find Available Expressions

\[\text{AVAIL}(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

- **j = 2 * a**
- **k = 2 * b**
 - DEF = \{ 2*a, 2*b \}
 - NKILL = exprs w/o j or k

- **x = a + b**
- **b = c + d**
- **m = 5 * n**
 - DEF = \{ 5*n, c+d \}
 - NKILL = exprs w/o m, x, b

- **c = 5 * n**
 - DEF = \{ 5*n \}
 - NKILL = exprs w/o c

- **h = 2 * a**
 - DEF = \{ 2*a \}
 - NKILL = exprs w/o h

- **DEF** = \{ 2*a, 2*b \}
- **NKILL** = exprs w/o j or k

= in worklist
= processing
Example: Find Available Expressions

AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))

AVAIL = \{ \}
DEF = \{ 2*a, 2*b \}
NKILL = \text{exprs} \text{ w/o } j \text{ or } k

DEF = \{ 5*n, c+d \}
NKILL = \text{exprs} \text{ w/o } m, x, b

DEF = \{ 5*n \}
NKILL = \text{exprs} \text{ w/o } c

DEF = \{ 2*a \}
NKILL = \text{exprs} \text{ w/o } h

= in worklist
= processing

UW CSE 401/M501 Spring 2018
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

- \(j = 2 \times a \)
- \(k = 2 \times b \)
- \(x = a + b \)
- \(b = c + d \)
- \(m = 5 \times n \)
- \(h = 2 \times a \)

\(\text{DEF} = \{ 5\times n, c+d \} \)
\(\text{NKILL} = \text{exprs w/o m, x, b} \)

\(\text{AVAIL} = \{ \} \)
\(\text{DEF} = \{ 2\times a, 2\times b \} \)
\(\text{NKILL} = \text{exprs w/o j or k} \)

\(\text{DEF} = \{ 5\times n \} \)
\(\text{NKILL} = \text{exprs w/o c} \)

\(\text{AVAIL} = \{ 5\times n \} \)
\(\text{DEF} = \{ 2\times a \} \)
\(\text{NKILL} = \text{exprs w/o h} \)

= in worklist

= processing
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

- **AVAIL = \{ \}**
 - **DEF = \{ 2*a, 2*b \}**
 - **NKILL = exprs w/o j or k**
- **AVAIL = \{ 2*a, 2*b \}**
 - **DEF = \{ 5*n, c+d \}**
 - **NKILL = exprs w/o m, x, b**
- **AVAIL = \{ 5*n \}**
 - **DEF = \{ 5*n \}**
 - **NKILL = exprs w/o c**
- **AVAIL = \{ 5*n \}**
 - **DEF = \{ 2*a \}**
 - **NKILL = exprs w/o h**

- Light green = in worklist
- Yellow = processing
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

- \(j = 2 \times a \)
- \(k = 2 \times b \)

AVAIL = \{\}
DEF = \{2*a, 2*b\}
NKILL = exprs w/o j or k

\(x = a + b \)
\(b = c + d \)
\(m = 5 \times n \)

AVAIL = \{2*a, 2*b\}
DEF = \{5*n, c+d\}
NKILL = exprs w/o m, x, b

\(c = 5 \times n \)

AVAIL = \{2*a, 2*b\}
DEF = \{5*n\}
NKILL = exprs w/o c

\(h = 2 \times a \)

AVAIL = \{5*n\}
DEF = \{2*a\}
NKILL = exprs w/o h
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

\[
\begin{align*}
\text{AVAIL} &= \{ \} \\
\text{DEF} &= \{ 2\ast a, 2\ast b \} \\
\text{NKILL} &= \text{exprs w/o } j \text{ or } k
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2\ast a, 2\ast b \} \\
\text{DEF} &= \{ 5\ast n, c+d \} \\
\text{NKILL} &= \text{exprs w/o } m, x, b
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2\ast a, 2\ast b \} \\
\text{DEF} &= \{ 5\ast n \} \\
\text{NKILL} &= \text{exprs w/o } c
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 5\ast n, 2\ast a \} \\
\text{DEF} &= \{ 2\ast a \} \\
\text{NKILL} &= \text{exprs w/o } h
\end{align*}
\]

- \(\ast \) = in worklist
- \(\ast \) = processing
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

\[
\begin{align*}
&j = 2 \times a \\
&k = 2 \times b
\end{align*}
\]

- AVAIL = \{ \}
- DEF = \{ 2*a, 2*b \}
- NKILL = exprs w/o j or k

AVAIL = \{ 2*a, 2*b \}
DEF = \{ 5*n, c+d \}
NKILL = exprs w/o m, x, b

AVAIL = \{ 2*a, 2*b \}
DEF = \{ 2*a \}
NKILL = exprs w/o h

\[
\begin{align*}
&x = a + b \\
&b = c + d \\
&m = 5 \times n
\end{align*}
\]

AVAIL = \{ 5*n, 2*a \}
DEF = \{ 5*n \}
NKILL = exprs w/o c

AVAIL = \{ 5*n, 2*a \}
DEF = \{ 2*a \}
NKILL = exprs w/o h

And the common subexpression is???
Example: Find Available Expressions

$$AVAIL(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (AVAIL(x) \cap NKILL(x)))$$

- AVAIL = \{ \}
- DEF = \{ 2*a, 2*b \}
- NKILL = exprs w/o j or k

AVAIL = \{ 2*a, 2*b \}
DEF = \{ 5*n, c+d \}
NKILL = exprs w/o m, x, b

AVAIL = \{ 5*n, 2*a \}
DEF = \{ 2*a \}
NKILL = exprs w/o h
Dataflow analysis

• Available expressions are an example of a dataflow analysis problem
• Many similar problems can be expressed in a similar framework
• Only the first part of the story – once we’ve discovered facts, we then need to use them to improve code
Characterizing Dataflow Analysis

• All of these algorithms involve sets of facts about each basic block b
 - $\text{IN}(b)$ — facts true on entry to b
 - $\text{OUT}(b)$ — facts true on exit from b
 - $\text{GEN}(b)$ — facts created and not killed in b
 - $\text{KILL}(b)$ — facts killed in b

• These are related by the equation
 $$\text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))$$
 — Solve this iteratively for all blocks
 — Sometimes information propagates forward; sometimes backward
Example: Live Variable Analysis

• A variable \(v \) is **live** at point \(p \) iff there is *any* path from \(p \) to a use of \(v \) along which \(v \) is not redefined

• Some uses:
 – Register allocation – only live variables need a register
 – Eliminating useless stores – if variable not live at store, then stored variable will never be used
 – Detecting uses of uninitialized variables – if live at declaration (before initialization) then it might be used uninitialized
 – Improve SSA construction – only need \(\Phi \)-function for variables that are live in a block (later)
Liveness Analysis Sets

• For each block \(b \), define
 – \(\text{use}[b] \) = variable used in \(b \) before any def
 – \(\text{def}[b] \) = variable defined in \(b \) & not killed
 – \(\text{in}[b] \) = variables live on entry to \(b \)
 – \(\text{out}[b] \) = variables live on exit from \(b \)
Equations for Live Variables

• Given the preceding definitions, we have

\[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \]
\[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s] \]

• Algorithm
 – Set \(\text{in}[b] = \text{out}[b] = \emptyset \)
 – Update \(\text{in} \), \(\text{out} \) until no change
Example (1 stmt per block)

• Code

```plaintext
a := 0
L:
b := a+1
c := c+b
a := b*2
if a < N goto L
return c
```

```
1: a:= 0
2: b:=a+1
3: c:=c+b
4: a:=b+2
5: a < N
6: return c
```

\[
in[b] = \text{use}[b] \cup (\text{out}[b] \setminus \text{def}[b])
\]

\[
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Calculation

<table>
<thead>
<tr>
<th>block</th>
<th>use</th>
<th>def</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
in[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])
\]
\[
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Calculation

<table>
<thead>
<tr>
<th>block</th>
<th>use</th>
<th>def</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>--</td>
<td>--</td>
<td>c</td>
<td>--</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>--</td>
<td>c</td>
<td>a,c</td>
<td>a,c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>a</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>b,c</td>
<td>c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>--</td>
<td>a</td>
<td>a,c</td>
<td>c</td>
<td>a,c</td>
<td>c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: \(a := 0 \)

2: \(b := a + 1 \)

3: \(c := c + b \)

4: \(a := b + 2 \)

5: \(a < N \)

6: return c

\[
\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])
\]

\[
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Equations for Live Variables v2

• Many problems have more than one formulation. For example, Live Variables...

• Sets
 – USED(b) – variables used in b before being defined in b
 – NOTDEF(b) – variables not defined in b
 – LIVE(b) – variables live on exit from b

• Equation
 \[
 \text{LIVE}(b) = \bigcup_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{LIVE}(s) \cap \text{NOTDEF}(s))
 \]
Efficiency of Dataflow Analysis

• The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG
 – Forward problems – reverse postorder
 – Backward problems – postorder
Example: Reaching Definitions

• A definition d of some variable v reaches operation i iff i reads the value of v and there is a path from d to i that does not define v

• Uses
 – Find all of the possible definition points for a variable in an expression
Equations for Reaching Definitions

• Sets
 – \(\text{DEFOUT}(b) \) – set of definitions in \(b \) that reach the end of \(b \) (i.e., not subsequently redefined in \(b \))
 – \(\text{SURVIVED}(b) \) – set of all definitions not obscured by a definition in \(b \)
 – \(\text{REACHES}(b) \) – set of definitions that reach \(b \)

• Equation
 \[
 \text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup \big(\text{REACHES}(p) \cap \text{SURVIVED}(p) \big)
 \]
Example: Very Busy Expressions

• An expression e is considered very busy at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations.

• Uses
 – Code hoisting – move e to p (reduces code size; no effect on execution time)
Equations for Very Busy Expressions

• Sets
 – \(\text{USED}(b) \) – expressions used in \(b \) before they are killed
 – \(\text{KILLED}(b) \) – expressions redefined in \(b \) before they are used
 – \(\text{VERYBUSY}(b) \) – expressions very busy on exit from \(b \)

• Equation
 \[
 \text{VERYBUSY}(b) = \bigcap_{s \in \text{succ}(b)} \text{USED}(s) \cup \\
 (\text{VERYBUSY}(s) - \text{KILLED}(s))
 \]
Using Dataflow Information

• A few examples of possible transformations...
Classic Common-Subexpression Elimination (CSE)

• In a statement \(s: t := x \text{ op } y \), if \(x \text{ op } y \) is available at \(s \) then it need not be recomputed.

• Analysis: compute \textit{reaching expressions} i.e., statements \(n: v := x \text{ op } y \) such that the path from \(n \) to \(s \) does not compute \(x \text{ op } y \) or define \(x \) or \(y \).
Classic CSE Transformation

• If \(x \) \text{ op } y is defined at \(n \) and reaches \(s \)
 – Create new temporary \(w \)
 – Rewrite \(n: v := x \text{ op } y \) as
 \[
 n: w := x \text{ op } y \\
 n': v := w
 \]
 – Modify statement \(s \) to be
 \[
 s: t := w
 \]
 – (Rely on copy propagation to remove extra assignments if not really needed)
Revisiting Example (w/slight addition)

\[
\begin{align*}
 j &= 2 \times a \\
 k &= 2 \times b \\
 x &= a + b \\
 b &= c + d \\
 m &= 5 \times n \\
 c &= 5 \times n \\
 h &= 2 \times a \\
 i &= 5 \times n
\end{align*}
\]

AVAIL = { }
AVAIL = { \{2a, 2b\} }
AVAIL = { 2a, 2b }
AVAIL = { 5n, 2a }
AVAIL = { 5n, 2a }
Revisiting Example (w/slight addition)

\[
\begin{align*}
t_1 &= 2 \times a \\
j &= t_1 \\
k &= 2 \times b
\end{align*}
\]

Regular graph:

\[
\begin{align*}
x &= a + b \\
b &= c + d \\
t_2 &= 5 \times n \\
m &= t_2 \\
h &= t_1 \\
i &= t_2
\end{align*}
\]

\[
\text{AVAIL} = \{ 2*a, 2*b \}
\]

\[
\text{AVAIL} = \{ 2*a, 2*b \}
\]

\[
\text{AVAIL} = \{ 2*a, 2*b \}
\]

\[
\text{AVAIL} = \{ 5*n, 2*a \}
\]
Then Apply Very Busy...

\[
\begin{align*}
t_1 &= 2 \times a \\
j &= t_1 \\
k &= 2 \times b \\
t_2 &= 5 \times n
\end{align*}
\]

AVAIL = \{ \}

AVAIL = \{ 2\times a, \ 2\times b \}

\[
\begin{align*}
x &= a + b \\
b &= c + d \\
t_2 &= 5 \times n \\
m &= t_2
\end{align*}
\]

AVAIL = \{ 5\times n, \ 2\times a \}

AVAIL = \{ 2\times a, \ 2\times b \}

AVAIL = \{ \}

h = t_1

i = t_2
Constant Propagation

• Suppose we have
 – Statement d: t := c, where c is constant
 – Statement n that uses t

• If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t
Copy Propagation

• Similar to constant propagation

• Setup:
 – Statement d: t := z
 – Statement n uses t

• If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
 – Recall that this can help remove dead assignments
Copy Propagation Tradeoffs

• Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic

• But it can expose other optimizations, e.g.,

\[
\begin{align*}
a &= y + z \\
u &= y \\
c &= u + z & \text{// copy propagation makes this } y + z
\end{align*}
\]

— After copy propagation we can recognize the common subexpression
Dead Code Elimination

• If we have an instruction

 \[s: a := b \, \text{op} \, c \]

 and \(a \) is not live-out after \(s \), then \(s \) can be eliminated

 – Provided it has no implicit side effects that are visible (output, exceptions, etc.)

 • If \(b \) or \(c \) are function calls, they have to be assumed to have unknown side effects unless the compiler can prove otherwise
Dataflow...

- General framework for discovering facts about programs
 - Although not the only possible story
- And then: facts open opportunities for code improvement
- Next time: SSA (static single assignment) form – transform program to a new form where each variable has only one single definition
 - Can make many optimizations/analysis more efficient