

CSE 401 - Semantics & Type Checking Worksheet - Week 7 - Solution

All problems in this worksheet will use the following global scope:

class​​ Bar { ​boolean​​ field; ​public int​​ method(​int​​ i, ​int​​ j); }
class​​ Foo ​extends​​ Bar { ​int​​ val; ​public​​ ​boolean​​ whoop(​int​​ x); }

1. Consider the following hypothetical method definition for ​Bar.method ​:

public int​​ method(​int​​ i, ​int​​ j) {

int ​​r ​;
boolean ​​b ​;
Foo o ​;
if​​ (​this​​.field) {

o = ​this​​;
b = o.whoop(i + j);

r = o.val;

} ​else​​ {
r = i * j + 3;

}

return ​​r;
}

a. What is the local scope in the method body?

Bar ​this​​; ​int​​ i; ​int​​ j; ​int​​ r; ​boolean​​ b; Foo o;

Remember that every MiniJava method has an implicit parameter “​this​​” for the receiver
object. For the sake of type-checking the method body, it makes sense to treat it like a normal
parameter, though your real code need not represent it as such in symbol tables.

b. The method body is ill-behaved. Can you prove this by describing a possible execution

trace of the method that would “go wrong”? (It suffices to provide possible runtime
values for ​variables in the local scope​ the parameters.)

this ​​= Bar(field: ​true​​); i = *; j = *;

* ​ is a stand-in for any integer value.

The ill-behavior is the potential failure of the downcast in the assignment “​o = ​this​​.”
Unlike real Java, MiniJava’s dynamic semantics defines no behavior for a failing downcast, so
the static semantics forbids downcasts altogether.

c. The method body is also ill-typed. Can you describe which type check(s) deduce this

fact?

Since MiniJava’s static semantics forbids downcasts, a MiniJava compiler must check that the
type of an assignment statement’s right-hand side is either the same as the left-hand side’s
type or a subclass type of the left-hand side’s class type.

One of the suggested project extensions is actually to add support for downcasts safely
checked at run-time, defining the behavior of failed downcasts as “terminate with error.”

d. Is ​every​ possible execution trace of that method ill-behaved? Can you describe one

that happens to be perfectly well-behaved? (Again, possible runtime values for
variables in the local scope​ the parameters suffice.)

No, some possible executions of the method avoid the ill-behaving branch, for example given
the following parameter values:

this ​​= Bar(field: ​false​​); i = *; j = *;

Alternatively, some possible executions could enable the “downcast” to succeed, if the
receiver object (​this​​) ends up really being an instance of the subclass ​Foo​​, like so:

this ​​= Foo(field: ​true​​, val: *); i = *; j = *;

* ​ is a stand-in for any integer value.

e. Suppose that we replaced the use of ​this​​.field ​ in the method body to call a
boolean method that always returns false. How would this change your answers to the
previous questions?

Even though the ill-behaving branch would never get run, type checking composes through
types and type signatures (​not​ the specific values!), so a type checker for MiniJava will not
verify the method body (​i.e.​, will report a type error), despite the forbidden behavior being
impossible according to the dynamic semantics.

