Semantics &
Type Checking



Announcements

- Midterm grades have been released

- Ifyou have any questions, feel free to drop by office hours

- Ifitreally looks like we goofed, submit a regrade request



Announcements

- Midterm grades have been released

- If you have any questions, feel free to drop by office hours

- Ifitreally looks like we goofed, submit a regrade request

- Semantics Project Part due November 15th (1 week away!)

- If you haven’t already, start early! There are plenty of weird edge cases to
think about



Interpreters vs. Compilers

- Compilers

Translate between different
languages

e.g. MiniJava = x86 ASM

e.g. Java = Java Byte Code

JAVA

Source
Code

Compiler

-

x86 ASM

Source
Code



Interpreters vs. Compilers

- Compilers

- Translate between different
languages

- e.g. MiniJava = x86 ASM

- e.g. Java = Java Byte Code

PYTHON

Source
Code

Interpreter

- Interpreters

- Take action upon a piece of
code as itisread

Vv

Behavior!




Interpreters vs. Compilers

- Compilers

- Translate between different
languages

- e.g. MiniJava = x86 ASM

- e.g. Java = Java Byte Code

JAVA

Source
Code

Compiler

-

Interpreter

- Interpreters

- Take action upon a piece of
code as itisread

Vv

Behavior!

x86 ASM

Source
Code

Interpreter

Vv

Behavior!




Interpreter Demo



Semantics & Type Checking



Semantics, Dynamic and Static

semantics: precise meaning of program syntax

what interpretation or code generation implements

dynamic semantics: systematic rules to define computational behavior

static semantics: systematic rules to define well-behaved computation

EI what type checking implements

Generally helpful to think of “well-behaved” as “plays nice with other code.”



Static Semantics of MiniJava

Every language has its own idea of “well-behaved,”
but in MiniJava, well-behaved code must...

1. neveradd, subtract, multiply, or print non-integers
2. never call a non-existent method
3. never access a non-existent field

n. ...andsoon (see the assignment page for more)

How do type checks relate to these conditions?



Type Checking for MiniJava

The type checker’s goal is to verify the well-behavior of a source program:

well-typed = well-behaved

A type classifies not just values but also expressions w.r.t. a scope.

L Analogously for type signature and methods/classes.

The hallmark of type checking is compositionality, facilitated by scoped symbol tables.




Type Checking for MiniJava

MiniJava syntax

well-behaved

well-typed




Examples

Global scope: class Foo { int f; public int m(boolean b); }

Local scope: Foo this; int x; boolean y;
In these scopes, which MiniJava expressions have type int? Why (not)?
56 x+ (new Foo()) .f x+this.m()
2+x x+y x+z.m(y)

this.f (new Bar()) .£f x+this.m(true)



Scopes and Symbol Tables

Accurately tracking scope information, via symbol tables, is critical to type checking.

Some guiding observations from today:
- Symbol information in MiniJava has layers of dependence. (What are they?)
- It may make your life easier if you type-check layer by layer.

Implementation tip:
- It might be handy to stash a link to a class’s/method’s symbol table in its AST node



The Take-Away

Static semantics is usually about what code must not do.

.. ruling out ill-behaved traces is a useful mental model
.". implementing and debugging a type checker is all about edge cases
.". need to consider all names in scope, with their type (signatures)

Beware infinite loops!



