
Semantics &
Type Checking

CSE 401 Section 7
Jack Eggleston, Aaron Johnston, & Nate Yazdani



Announcements

- Midterm grades have been released
- If you have any questions, feel free to drop by office hours

- If it really looks like we goofed, submit a regrade request



Announcements

- Midterm grades have been released
- If you have any questions, feel free to drop by office hours

- If it really looks like we goofed, submit a regrade request

- Semantics Project Part due November 15th (1 week away!)
- If you haven’t already, start early! There are plenty of weird edge cases to 

think about



Interpreters vs. Compilers

- Compilers
- Translate between different 

languages

- e.g. MiniJava ⇒ x86 ASM

- e.g. Java ⇒ Java Byte Code

Source 
Code Compiler Source 

Code

JAVA x86 ASM



Interpreters vs. Compilers

- Compilers
- Translate between different 

languages

- e.g. MiniJava ⇒ x86 ASM

- e.g. Java ⇒ Java Byte Code

- Interpreters
- Take action upon a piece of 

code as it is read

Source 
Code

Interpreter

Behavior!

PYTHON



Interpreters vs. Compilers

- Compilers
- Translate between different 

languages

- e.g. MiniJava ⇒ x86 ASM

- e.g. Java ⇒ Java Byte Code

- Interpreters
- Take action upon a piece of 

code as it is read

Source 
Code Compiler Source 

Code

Behavior!

InterpreterInterpreter

Behavior!

JAVA x86 ASM



Interpreter Demo



Semantics & Type Checking



semantics: precise meaning of program syntax

dynamic semantics: systematic rules to define computational behavior

static semantics: systematic rules to define well-behaved computation

Semantics, Dynamic and Static

what type checking implements

what interpretation or code generation implements

Generally helpful to think of “well-behaved” as “plays nice with other code.”



Static Semantics of MiniJava

1. never add, subtract, multiply, or print non-integers

2. never call a non-existent method

3. never access a non-existent field

 n. … and so on (see the assignment page for more)

Every language has its own idea of “well-behaved,”
but in MiniJava, well-behaved code must...

How do type checks relate to these conditions?



Type Checking for MiniJava

A type classifies not just values but also expressions w.r.t. a scope.

↳Analogously for type signature and methods/classes.

The type checker’s goal is to verify the well-behavior of a source program:

well-typed ⟹ well-behaved

The hallmark of type checking is compositionality, facilitated by scoped symbol tables.



Type Checking for MiniJava

well-behaved

well-typed

MiniJava syntax



Examples
Global scope: class Foo { int f; public int m(boolean b); }

Local scope: Foo this; int x; boolean y;

56

In these scopes, which MiniJava expressions have type int? Why (not)?

2+x

this.f

x+this.m()

x+z.m(y)

x+this.m(true)

x+(new Foo()).f

x+y

(new Bar()).f



Scopes and Symbol Tables

Accurately tracking scope information, via symbol tables, is critical to type checking.

Some guiding observations from today:
- Symbol information in MiniJava has layers of dependence. (What are they?)
- It may make your life easier if you type-check layer by layer.

Implementation tip:
- It might be handy to stash a link to a class’s/method’s symbol table in its AST node



The Take-Away

Static semantics is usually about what code must not do.

∴ ruling out ill-behaved traces is a useful mental model
∴ implementing and debugging a type checker is all about edge cases
∴ need to consider all names in scope, with their type (signatures)

Beware infinite loops!


