
CSE 401 - Midterm Review - Week 6 
 
1. Ambiguity 

Here is one possible grammar for logical comparison operators in Java. Note that ||  is used as a single token 
representing logical or in Java -- it is distinct from the |  that is used to separate productions. 

 
A ::= A || B 
A ::= B 
B ::= A && A 
B ::= id 

 
a. Show that this grammar is ambiguous. 

 
b. Give a grammar that generates the same language, but without ambiguity. For this problem, you may use any 

precedence and associativity that you would like as long as the resulting grammar is unambiguous and will 
generate the same set of strings as the original grammar. 

 
2. Regular Expressions and DFAs 

a. Write a regular expression that matches the following set of strings: 
 
All strings of a’s, b’s, and c’s in which there is at least one c, and in which there are no consecutive b’s. 
 
You may only use the basic operations of concatenation, choice (|), and repetition (*), plus the simple 
extensions ? and +, and character sets like [a-z] and [^a-z]. You may also give names to subexpressions like 
vowels = [aeiou]. 
 

b.   Draw a DFA that matches the same set of strings as your regular expression from part (a). It is not necessary to 
use the formal algorithm for converting from a regular expression -- you may find it easier (and the result more 
readable) to draw the DFA directly.  For this problem, you do not have to worry about an explicit error state. 

 
3. Abstract Syntax and Semantics 

Consider the following Abstract Syntax Tree for a fragment of a MiniJava program: 

 
a. Write the MiniJava source code that would produce this AST, including all necessary punctuation and syntax 

to make it legal Java code. In other words, write just the portion of the input that could be fed into the scanner 
and parser so that the resulting overall AST would contain this tree. 

 
b. What checks need to be performed in the static semantics/typechecking phase of the compiler to verify that 

this abstract syntax is, in fact, legal and contains no type errors or other static semantics problems? You may 
annotate the diagram itself or reproduce your answer by listing the checks for each node. 

 



4. Resolving LR(0) Conflicts with SLR 
Consider the following grammar and its LR(0) parse table: 

 
1. S’::= S $ 
2. S ::= A x S 
3. S ::= A x 
4. A ::= y 

 

  x  y  $  S  A 

1    s4    g2  g3 

2      acc     

3  s5         

4  r4  r4  r4     

5  r3  s4,r3  r3  g6  g3 

6  r2  r2  r2     

 
a. What kind of conflict is present in this LR(0) parse table? 

 
b. Construct the SLR parse table for this grammar, computing nullable and the FIRST and FOLLOW sets for the 

grammar as necessary. Then describe why the SLR parse table resolves the conflict that is present in the LR(0) 
parse table. You may indicate the changes for SLR in the existing parse table above, or you may reproduce the 
new table entirely. 

 
5. Components of a Compiler 

The front end of a compiler consists of three parts: scanner, parser, and (static) semantics. Collectively these 
need to analyze the input program and decide if it is correctly formed. For each of the following MiniJava 
errors, indicate which stage of the front-end of the MiniJava compiler would normally handle it. If it helps to 
explain your answer you can give a brief reason why, but that is not required. For this question, you may use a 
copy of the MiniJava grammar; you are not expected to have it memorized. 

 
a. Using the increment operator from Java, “++”, after the name of a variable of type int. 

 
b. Using the increment operator from Java, “++”, after the name of a variable of type boolean. 

 
c. Assigning a value to the integer literal 5, as in 5 = 10; 

 
d. Writing “/*” in a program but never writing the corresponding “*/”. 

 
e. Declaring a variable named “x” when a variable with that name has already been declared. 

 


