

CSE 401 - LR Parsing Worksheet - Week 3
Problem 1

a. Using the technique shown in lecture, construct the LR(0) state machine
for this grammar. Remember to show the set of items that correspond
to each state, including both any initial items and the resulting closure.

1. S’::= S $

2. S ::= a X a

3. S ::= b X

4. X ::= c

5. X ::= S c

b. Based on your state machine, build the corresponding LR(0) parse table. Start by filling in the ACTION and

GOTO headers with the grammar’s terminals and non-terminals, respectively, then give each state in your
state machine a number and use it to fill out one row of the table.

STATE
ACTION GOTO

c. Finally, use your table to parse the provided input, keeping track of both the stack and the remaining input at

each step in a table such as the one below. For clarity, you will probably find it easiest to push both the
current state and the corresponding symbol onto the stack at each point, although a real parser would only
need to keep track of the states. The initial state (​s ​

1 ​) has already been inserted onto the stack for you.

STACK INPUT

$ s​
1

a b c c a $

Problem 2
a. Using the technique shown in lecture, construct the LR(0) state machine

for this grammar. Remember to show the set of items that correspond
to each state, including both any initial items and the resulting closure.

1. S’::= S $

2. S ::= (E)

3. E ::= E && V

4. E ::= V

5. V ::= ! (E)

6. V ::= a

b. Based on your state machine, build the corresponding LR(0) parse table. Start by filling in the ACTION and

GOTO headers with the grammar’s terminals and non-terminals, respectively, then give each state in your
state machine a number and use it to fill out one row of the table.

STATE
ACTION GOTO

c. Finally, use your table to parse the provided input, keeping track of both the stack and the remaining input at
each step in a table such as the one below. For clarity, you will probably find it easiest to push both the
current state and the corresponding symbol onto the stack at each point, although a real parser would only
need to keep track of the states. The initial state (​s ​

1 ​) has already been inserted onto the stack for you.

STACK

INPUT

$ s​
1

(! (a && a)) $

