CSE 401/M501 – Compilers

Dataflow Analysis
Hal Perkins
Autumn 2018
Agenda

• Dataflow analysis: a framework and algorithm for many common compiler analyses
• Initial example: dataflow analysis for common subexpression elimination
• Other analysis problems that work in the same framework
• Some of these are the same optimizations we’ve seen, but more formally and with details
Common Subexpression Elimination

- Goal: use dataflow analysis to find common subexpressions
- Idea: calculate *available expressions* at beginning of each basic block
- Avoid re-evaluation of an available expression – use a copy operation
 - Simple inside a single block; more complex dataflow analysis used across blocks
“Available” and Other Terms

• An expression e is \textit{defined} at point p in the CFG if its value is computed at p
 – Sometimes called \textit{definition site}

• An expression e is \textit{killed} at point p if one of its operands is defined at p
 – Sometimes called \textit{kill site}

• An expression e is \textit{available} at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p
Available Expression Sets

• To compute available expressions, for each block b, define

 – $\text{AVAIL}(b)$ – the set of expressions available on entry to b

 – $\text{NKILL}(b)$ – the set of expressions not killed in b
 • i.e., all expressions in the program except for those killed in b

 – $\text{DEF}(b)$ – the set of expressions defined in b and not subsequently killed in b
Computing Available Expressions

• \(\text{AVAIL}(b) \) is the set

\[
\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))
\]

– \(\text{preds}(b) \) is the set of \(b \)'s predecessors in the CFG
– The set of expressions available on entry to \(b \) is the set of expressions that were available at the end of every predecessor basic block \(x \)
– The expressions available on exit from block \(b \) are those defined in \(b \) or available on entry to \(b \) and not killed in \(b \)

• This gives a system of simultaneous equations – a dataflow problem
Computing Available Expressions

• Big Picture
 – Build control-flow graph
 – Calculate initial local data – DEF(b) and NKILL(b)
 • This only needs to be done once for each block b and depends only on the statements in b
 – Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
 • Another fixed-point algorithm
Computing DEF and NKILL (1)

• For each block b with operations $o_1, o_2, ..., o_n$

 $KILLED = \emptyset$ // variables killed in b, not expressions

 $DEF(b) = \emptyset$

 for $k = n$ to 1 // note: working back to front

 assume o_k is “$x = y + z$”

 add x to $KILLED$

 if ($y \notin KILLED$ and $z \notin KILLED$)

 add “$y + z$” to $DEF(b)$ // i.e., neither y nor z killed

 // after this point in the b

 ...

UW CSE 401/M501 Autumn 2018
Computing DEF and NKILL (2)

• After computing DEF and KILLED for a block b, compute set of all expressions in the program not killed in b

$$NKILL(b) = \{ \text{all expressions} \}$$

for each expression e

for each variable $v \in e$

if $v \in \text{KILLED}$ then

$$NKILL(b) = NKILL(b) - e$$
Example: Compute DEF and NKILL

DEF = \{ 2*a, 2*b \}
NKILL = exprs w/o j or k

DEF = \{ 5*n \}
NKILL = exprs w/o c

DEF = \{ 2*a \}
NKILL = exprs w/o h

DEF = \{ 5*n, c+d \}
NKILL = exprs w/o m, x, b
Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

\[
\text{Worklist} = \{ \text{all blocks } b_k \}
\]
while (Worklist \(\neq \emptyset \))

 remove a block b from Worklist
 recompute AVAIL(b)
 if AVAIL(b) changed

\[
\text{Worklist} = \text{Worklist} \cup \text{successors}(b)
\]
Example: Find Available Expressions

AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))

DEF = \{ 2*a, 2*b \}
NKILL = \text{exprs w/o j or k}

DEF = \{ 5*n \}
NKILL = \text{exprs w/o c}

DEF = \{ 2*a \}
NKILL = \text{exprs w/o h}

DEF = \{ 5*n, c+d \}
NKILL = \text{exprs w/o m, x, b}

j = 2 * a
k = 2 * b

x = a + b
b = c + d
m = 5 * n

c = 5 * n

h = 2 * a

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))\]
Example: Find Available Expressions

\[\text{AVAIL}(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

\[j = 2 \times a \]
\[k = 2 \times b \]

\[x = a + b \]
\[b = c + d \]
\[m = 5 \times n \]

\[h = 2 \times a \]

AVAIL = \{ \}
DEF = \{ 2\times a, 2\times b \}
NKILL = exprs w/o j or k

DEF = \{ 5\times n \}
NKILL = exprs w/o c

DEF = \{ 2\times a \}
NKILL = exprs w/o h

= in worklist

= processing
Example: Find Available Expressions

AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

AVAIL = \{ \}
DEF = \{ 2*a, 2*b \}
NKILL = exprs w/o j or k

AVAIL = \{ 2*a, 2*b \}
DEF = \{ 5*n, c+d \}
NKILL = exprs w/o m, x, b

x = a + b
b = c + d
m = 5 * n

DEF = \{ 5*n \}
NKILL = exprs w/o c

h = 2 * a

DEF = \{ 2*a \}
NKILL = exprs w/o h

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

= in worklist
= processing
Example: Find Available Expressions

\[\text{AVAIL}(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

\[
\begin{align*}
\text{AVAIL} &= \{ \} \\
\text{DEF} &= \{ 2*a, 2*b \} \\
\text{NKILL} &= \text{exprs w/o j or k}
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2*a, 2*b \} \\
\text{DEF} &= \{ 5*n, c+d \} \\
\text{NKILL} &= \text{exprs w/o m, x, b}
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2*a, 2*b \} \\
\text{DEF} &= \{ 5*n \} \\
\text{NKILL} &= \text{exprs w/o c}
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 5*n \} \\
\text{DEF} &= \{ 2*a \} \\
\text{NKILL} &= \text{exprs w/o h}
\end{align*}
\]
Example: Find Available Expressions

\[
\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))
\]

- **j = 2 * a**
- **k = 2 * b**

AVAIL = \{ \}

DEF = \{ 2*a, 2*b \}

NKILL = exprs w/o j or k

- **x = a + b**
- **b = c + d**
- **m = 5 * n**

AVAIL = \{ 2*a, 2*b \}

DEF = \{ 5*n, c+d \}

NKILL = exprs w/o m, x, b

- **c = 5 * n**

AVAIL = \{ 2*a, 2*b \}

DEF = \{ 5*n \}

NKILL = exprs w/o c

- **h = 2 * a**

AVAIL = \{ 5*n, 2*a \}

DEF = \{ 2*a \}

NKILL = exprs w/o h

- \(= \) in worklist

- \(= \) processing
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

AVAIL = \{ \}
DEF = \{ 2*a, 2*b \}
NKILL = exprs w/o j or k

AVAIL = \{ 2*a, 2*b \}
DEF = \{ 5*n, c+d \}
NKILL = exprs w/o m, x, b

AVAIL = \{ 2*a, 2*b \}
DEF = \{ 5*n \}
NKILL = exprs w/o c

AVAIL = \{ 5*n, 2*a \}
DEF = \{ 2*a \}
NKILL = exprs w/o h

And the common subexpression is???
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

\[
\begin{align*}
\text{AVAIL} &= \{ \} \\
\text{DEF} &= \{ 2*a, 2*b \} \\
\text{NKILL} &= \text{exprs w/o } j \text{ or } k
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2*a, 2*b \} \\
\text{DEF} &= \{ 5*n, c+d \} \\
\text{NKILL} &= \text{exprs w/o } m, x, b
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 5*n, 2*a \} \\
\text{DEF} &= \{ 2*a \} \\
\text{NKILL} &= \text{exprs w/o } h
\end{align*}
\]
Dataflow analysis

- *Available expressions* is an example of a *dataflow analysis* problem.
- Many similar problems can be expressed in a similar framework.
- Only the first part of the story – once we’ve discovered facts, we then need to use them to improve code.
Characterizing Dataflow Analysis

• All of these algorithms involve sets of facts about each basic block b
 - IN(b) – facts true on entry to b
 - OUT(b) – facts true on exit from b
 - GEN(b) – facts created and not killed in b
 - KILL(b) – facts killed in b

• These are related by the equation
 \[\text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b)) \]
 – Solve this iteratively for all blocks
 – Sometimes information propagates forward; sometimes backward
Example: Live Variable Analysis

• A variable v is *live* at point p iff there is *any* path from p to a use of v along which v is not redefined.

• Some uses:
 – Register allocation – only live variables need a register
 – Eliminating useless stores – if variable not live at store, then stored variable will never be used
 – Detecting uses of uninitialized variables – if live at declaration (before initialization) then it might be used uninitialized
 – Improve SSA construction – only need Φ-function for variables that are live in a block (later)
Liveness Analysis Sets

• For each block b, define
 – $\text{use}[b] = \text{variable used in } b \text{ before any def}$
 – $\text{def}[b] = \text{variable defined in } b \text{ and not killed}$
 – $\text{in}[b] = \text{variables live on entry to } b$
 – $\text{out}[b] = \text{variables live on exit from } b$
Equations for Live Variables

• Given the preceding definitions, we have

\[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \]
\[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s] \]

• Algorithm
 – Set \(\text{in}[b] = \text{out}[b] = \emptyset \)
 – Update in, out until no change
Example (1 stmt per block)

• Code

```
a := 0
L:  b := a+1
c := c+b
a := b*2
if a < N goto L
return c
```

```
1: a:= 0
2: b:=a+1
3: c:=c+b
4: a:=b+2
5: a < N
6: return c
```

\[
in[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \\
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Calculation

<table>
<thead>
<tr>
<th>block</th>
<th>use</th>
<th>def</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: \(a := 0 \)
2: \(b := a + 1 \)
3: \(c := c + b \)
4: \(a := b + 2 \)
5: \(a < N \)
6: return \(c \)

\[
in[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])
\]
\[
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]

UW CSE 401/M501 Autumn 2018
Calculation

<table>
<thead>
<tr>
<th>block</th>
<th>use</th>
<th>def</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>--</td>
<td>--</td>
<td>c</td>
<td>--</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>--</td>
<td>c</td>
<td>a,c</td>
<td>a,c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>a</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>b,c</td>
<td>c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>--</td>
<td>a</td>
<td>a,c</td>
<td>c</td>
<td>a,c</td>
<td>c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: \(a := 0\)

2: \(b := a + 1\)

3: \(c := c + b\)

4: \(a := b + 2\)

5: \(a < N\)

6: return \(c\)

\[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])\]

\[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]\]
Equations for Live Variables v2

• Many problems have more than one formulation. For example, Live Variables...

• Sets
 – \(\text{USED}(b) \) – variables used in \(b \) before being defined in \(b \)
 – \(\text{NOTDEF}(b) \) – variables not defined in \(b \)
 – \(\text{LIVE}(b) \) – variables live on exit from \(b \)

• Equation
 \[
 \text{LIVE}(b) = \bigcup_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{LIVE}(s) \cap \text{NOTDEF}(s))
 \]
Efficiency of Dataflow Analysis

• The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG
 – Forward problems – reverse postorder
 – Backward problems – postorder
Example: Reaching Definitions

• A definition d of some variable v reaches operation i iff i reads the value of v and there is a path from d to i that does not define v

• Uses
 – Find all of the possible definition points for a variable in an expression
Equations for Reaching Definitions

• Sets
 – DEFOUT(b) – set of definitions in b that reach the end of b (i.e., not subsequently redefined in b)
 – SURVIVED(b) – set of all definitions not obscured by a definition in b
 – REACHES(b) – set of definitions that reach b

• Equation
 \[
 \text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup \\
 (\text{REACHES}(p) \cap \text{SURVIVED}(p))
 \]
Example: Very Busy Expressions

• An expression e is considered *very busy* at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations

• Uses
 – Code hoisting – move e to p (reduces code size; no effect on execution time)
Equations for Very Busy Expressions

• Sets
 – USED(b) – expressions used in b before they are killed
 – KILLED(b) – expressions redefined in b before they are used
 – VERYBUSY(b) – expressions very busy on exit from b

• Equation

\[
\text{VERYBUSY}(b) = \bigcap_{s \in \text{succ}(b)} \text{USED}(s) \cup \\
(\text{VERYBUSY}(s) - \text{KILLED}(s))
\]
Using Dataflow Information

• A few examples of possible transformations...
Classic Common-Subexpression Elimination (CSE)

• In a statement $s: t := x \text{ op } y$, if $x \text{ op } y$ is \textit{available} at s then it need not be recomputed

• Analysis: compute \textit{reaching expressions} i.e., statements $n: v := x \text{ op } y$ such that the path from n to s does not compute $x \text{ op } y$ or define x or y
Classic CSE Transformation

• If x op y is defined at n and reaches s
 – Create new temporary w
 – Rewrite n: v := x op y as
 n: w := x op y
 n’: v := w
 – Modify statement s to be
 s: t := w

 – (Rely on copy propagation to remove extra assignments if not really needed)
Revisiting Example (w/slight addition)

\[j = 2 \times a \]
\[k = 2 \times b \]

\[AVAIL = \{ \} \]

\[x = a + b \]
\[b = c + d \]
\[m = 5 \times n \]

\[AVAIL = \{ 2a, 2b \} \]

\[c = 5 \times n \]

\[AVAIL = \{ 2a, 2b \} \]

\[h = 2 \times a \]
\[i = 5 \times n \]

\[AVAIL = \{ 5n, 2a \} \]
Revisiting Example (w/slight addition)

\[t_1 = 2 \times a \]
\[j = t_1 \]
\[k = 2 \times b \]
\[x = a + b \]
\[b = c + d \]
\[t_2 = 5 \times n \]
\[m = t_2 \]
\[h = t_1 \]
\[i = t_2 \]

AVAIL = \{ 2*a, 2*b \}

AVAIL = \{ \}

AVAIL = \{ 2*a, 2*b \}

AVAIL = \{ \}

AVAIL = \{ 5*n, 2*a \}
Then Apply Very Busy...

```
t1 = 2 * a
j = t1
k = 2 * b
t2 = 5 * n
x = a + b
b = c + d
t2 = 5 * n
m = t2
h = t1
i = t2
t2 = 5 * n
c = t2
```

AVAIL = { 2*a, 2*b }
AVAIL = { 2*a, 2*b }
AVAIL = { 2*a, 2*b }
AVAIL = { 5*n, 2*a }
AVAIL = { }
Constant Propagation

• Suppose we have
 – Statement d: t := c, where c is constant
 – Statement n that uses t

• If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t
Copy Propagation

• Similar to constant propagation
• Setup:
 – Statement d: t := z
 – Statement n uses t
• If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
 – Recall that this can help remove dead assignments
Copy Propagation Tradeoffs

• Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic

• But it can expose other optimizations, e.g.,

 a := y + z
 u := y
 c := u + z // copy propagation makes this $y + z$

 – After copy propagation we can recognize the common subexpression
Dead Code Elimination

• If we have an instruction
 \[s: a := b \text{ op } c \]
 and \(a \) is not live-out after \(s \), then \(s \) can be eliminated
 – Provided it has no implicit side effects that are visible (output, exceptions, etc.)
 • If \(b \) or \(c \) are function calls, they have to be assumed to have unknown side effects unless the compiler can prove otherwise
Dataflow...

• General framework for discovering facts about programs
 – Although not the only possible story
• And then: facts open opportunities for code improvement
• Next time: SSA (static single assignment) form – transform program to a new form where each variable has only one single definition
 – Can make many optimizations/analysis more efficient