CSE 401/M501 – Compilers

LL and Recursive-Descent Parsing
Hal Perkins
Autumn 2018
Administrivia

- Parser/AST project assignment out – due on Oct. 25, a week from this Thursday
- HW3 schedule constraints: need to make solutions available before midterm
 - Working backwards:
 - Midterm, Fri. Nov. 2
 - Review in sections, Thur. Nov. 1
 - HW3 due Monday night, Oct. 29.
 - Allow 1 late day (solutions out in class Oct. 30), or usual 2 late days (solutions not out until sections Thur. Nov. 1)?
 - You decide!!
Agenda

• Top-Down Parsing
• Predictive Parsers
• LL(k) Grammars
• Recursive Descent
• Grammar Hacking
 – Left recursion removal
 – Left factoring
Basic Parsing Strategies (1)

• Bottom-up
 – Build up tree from leaves
 • Shift next input or reduce a handle
 • Accept when all input read and reduced to start symbol of the grammar
 – LR(k) and subsets (SLR(k), LALR(k), ...)

remaining input
Basic Parsing Strategies (2)

• Top-Down
 – Begin at root with start symbol of grammar
 – Repeatedly pick a non-terminal and expand
 – Success when expanded tree matches input
 – LL(k)
Top-Down Parsing

• Situation: have completed part of a left-most derivation
 \[S \Rightarrow^* wA\alpha \Rightarrow^* wxy \]
• Basic Step: Pick some production
 \[A ::= \beta_1 \beta_2 \cdots \beta_n \]
 that will properly expand \(A \) to match the input
 – Want this to be deterministic
Predictive Parsing

• If we are located at some non-terminal A, and there are two or more possible productions

 $A ::= \alpha$

 $A ::= \beta$

 we want to make the correct choice by looking at just the next input symbol

• If we can do this, we can build a *predictive parser* that can perform a top-down parse without backtracking
Example

- Programming language grammars are often suitable for predictive parsing
- Typical example

 $$stmt ::= \text{id} = \text{exp} \mid \text{return} \ \text{exp} \mid \text{if } (\ \text{exp} \) \ stmt \mid \text{while } (\ \text{exp} \) \ stmt$$

 If the next part of the input begins with the tokens

  ```
  \text{IF} \ \text{LPAREN} \ \text{ID(x)} \ ...
  ```

 we should expand $stmt$ to an if-statement
LL(1) Property

• A grammar has the LL(1) property if, for all non-terminals A, if productions $A ::= \alpha$ and $A ::= \beta$ both appear in the grammar, then it is true that

$$\text{FIRST}(\alpha) \cap \text{FIRST}(\beta) = \emptyset$$

(Provided that neither α or β is ε (i.e., empty). If either one is ε then we need to look at FOLLOW sets. ...)

• If a grammar has the LL(1) property, we can build a predictive parser for it that uses 1 symbol lookahead
LL(k) Parsers

• An LL(k) parser
 – Scans the input \textbf{Left} to right
 – Constructs a \textbf{Leftmost} derivation
 – Looking ahead at most \(k \) symbols

• 1-symbol lookahead is enough for many practical programming language grammars
 – LL(k) for \(k > 1 \) is rare in practice
 • and even if the grammar isn’t quite LL(1), it may be close enough that we can pretend it is LL(1) and cheat a little when it isn’t
Table-Driven LL(k) Parsers

• As with LR(k), a table-driven parser can be constructed from the grammar

• Example
 1. \(S ::= (S)S \)
 2. \(S ::= [S]S \)
 3. \(S ::= \varepsilon \)

• Table (entries are rule # to use to expand current non-terminal if next input is a particular terminal)

\[
\begin{array}{|c|c|c|c|}
\hline
S & (&) & [&] & $ \\
\hline
S & 1 & 3 & 2 & 3 & 3 \\
\hline
\end{array}
\]
LL vs LR (1)

• Table-driven parsers for both LL and LR can be automatically generated by tools
• LL(1) has to make a decision based on a single non-terminal and the next input symbol
• LR(1) can base the decision on the entire left context (i.e., contents of the stack) as well as the next input symbol
LL vs LR (2)

:. LR(1) is more powerful than LL(1)
 – Includes a larger set of languages

:. (editorial opinion) If you’re going to use a tool-generated parser, might as well use LR
 – But there are some very good LL parser tools out there (ANTLR, JavaCC, ...) that might win for other reasons (documentation, IDE support, integrated AST generation, local culture/politics/economics etc.)
Recursive-Descent Parsers

• One advantage of top-down parsing is that it is easy to implement by hand
 – And even if you use automatic tools, the code may be easier to follow and debug
• Key idea: write a function (method, procedure) corresponding to each non-terminal in the grammar
 – Each of these functions is responsible for matching its non-terminal with the next part of the input
Example: Statements

Grammar

\[stmt ::= id = exp ; \]
| return exp ;
| if (exp) stmt
| while (exp) stmt

Method for this grammar rule

```c
// parse stmt ::= id=exp; | ...
void stmt( ) {
    switch(nextToken) {
        RETURN: returnStmt(); break;
        IF: ifStmt(); break;
        WHILE: whileStmt(); break;
        ID: assignStmt(); break;
    }
}
```
Example (more statements)

// parse while (exp) stmt
void whileStmt() {
 // skip "while" "("
 getNextToken();
 getNextToken();

 // parse condition
 exp();

 // skip ")"
 getNextToken();

 // parse stmt
 stmt();
}

// parse return exp ;
void returnStmt() {
 // skip "return"
 getNextToken();

 // parse expression
 exp();

 // skip ";"
 getNextToken();
}
Recursive-Descent Recognizer

• Easy!
• Pattern of method calls traces leftmost derivation in parse tree
• Examples only handle valid programs and choke on errors. Real parsers need:
 – Better error recovery (don’t get stuck on a bad token)
 • Often: skip input until something in the FOLLOW set of something being expanded is reached
 – Semantic checks (declarations, type checking, ...)
 – Some sort of processing after recognizing (build AST, 1-pass code generation, ...)

UW CSE 401/M501 Autumn 2018
Invariant for Parser Functions

• The parser functions need to agree on where they are in the input
• Useful invariant: When a parser function is called, the current token (next unprocessed piece of the input) is the token that begins the expanded non-terminal being parsed
 – Corollary: when a parser function is done, it must have completely consumed input correspond to that non-terminal
Possible Problems

• Two common problems for recursive-descent (and LL(1)) parsers
 – Left recursion (e.g., $E ::= E + T \mid ...$)
 – Common prefixes on the right side of productions
Left Recursion Problem

Grammar rule

\(expr ::= expr \ + \ term \)

\(| \ term \)

And the bug is????

Code

// parse expr ::= ...

void expr() {
 expr();
 if (current token is PLUS) {
 getNextToken();
 term();
 }
}

UW CSE 401/M501 Autumn 2018
Left Recursion Problem

• If we code up a left-recursive rule as-is, we get an infinite recursion

• Non-solution: replace with a right-recursive rule

\[
expr ::= term + expr \mid term
\]

– Why isn’t this the right thing to do?
Formal Left Recursion Solution

• Rewrite using right recursion and a new non-terminal
• Original: \(expr ::= expr + term \mid term \)
• New:

\[
expr ::= term \text{ exprtail} \\
\text{exprtail} ::= + term \text{ exprtail} \mid \varepsilon
\]

• Properties
 – No infinite recursion if coded up directly
 – Maintains required left associatively (\textit{if} you handle things correctly in the semantic actions)
Another Way to Look at This

• Observe that

\[expr ::= expr + term | term \]

generates the sequence

\[\ldots((term + term) + term) + \ldots + term \]

• We can sugar the original rule to reflect this

\[expr ::= term \{ + term \}* \]

• This leads directly to recursive-descent parser code

 – Just be sure to do the correct thing to handle associativity as the terms are parsed
Code for Expressions (1)

// parse
// expr ::= term { + term }*
void expr() {
 term();
 while (next symbol is PLUS) {
 getNextToken();
 term();
 }
}

// parse
// term ::= factor { * factor }*
void term() {
 factor();
 while (next symbol is TIMES) {
 getNextToken();
 term();
 factor();
 }
}
// parse

// factor ::= int | id | (expr)
void factor() {

 switch(nextToken) {

 case INT:
 process int constant;
 getNextToken();
 break;
 ...

 case ID:
 process identifier;
 getNextToken();
 break;

 case LPAREN:
 getNextToken();
 expr();
 getNextToken();
 break;

 }
}
What About Indirect Left Recursion?

• A grammar might have a derivation that leads to a left recursion
 \[A \Rightarrow \beta_1 \Rightarrow^* \beta_n \Rightarrow A \gamma \]

• Solution: transform the grammar to one where all productions are either
 \[A ::= a\alpha \quad \text{– i.e., starts with a terminal symbol, or} \]
 \[A ::= A\alpha \quad \text{– i.e., direct left recursion} \]
 then use formal left-recursion removal to eliminate all direct left recursions
Eliminating Indirect Left Recursion

• Basic idea: Rewrite all productions $A ::= B\ldots$ where A and B are different non-terminals by using all $B ::= \ldots$ productions to replace the initial rhs B

• Example: Suppose we have $A ::= B\delta$, $B ::= \alpha$, and $B ::= \beta$. Replace $A ::= B\delta$ with $A ::= \alpha\delta$ and $A ::= \beta\delta$.

• Need to pick an order to process the non-terminals to avoid re-introducing indirect left recursions. Not complicated, just be systematic.
 – Details in compiler or formal-language textbooks
Second Problem: Left Factoring

• If two rules for a non-terminal have right hand sides that begin with the same symbol, we can’t predict which one to use
• Solution: Factor the common prefix into a separate production
Left Factoring Example

• Original grammar

\[
ifStmt ::= \text{if}\ (\ expr \) \ stmt \\
| \text{if}\ (\ expr \) \ stmt \ \text{else} \ stmt
\]

• Factored grammar

\[
ifStmt ::= \text{if}\ (\ expr \) \ stmt \ ifTail \\
ifTail ::= \text{else} \ stmt \ | \ \epsilon
\]
Parsing if Statements

• But it’s easiest to just code up the “else matches closest if” rule directly

• (If you squint properly this is really just left factoring with the two productions handled by a single routine)

 // parse
 // if (expr) stmt [else stmt]
 void ifStmt() {
 getNextToken();
 getNextToken();
 expr();
 getNextToken();
 stmt();
 if (next symbol is ELSE) {
 getNextToken();
 stmt();
 }
 }
Another Lookahead Problem

• In languages like FORTRAN, parentheses are used for both array subscripts and function calls.

• A FORTRAN grammar includes something like

\[\text{factor} ::= \text{id} \ (\text{subscripts}) \ | \ \text{id} \ (\text{arguments}) \ | \ ... \]

• When the parser sees “\text{id} (”), how can it decide whether this begins an array element reference or a function call?
Two Ways to Handle id (...)

• Use the type of id to decide
 – Requires declare-before-use restriction if we want to parse in 1 pass; also means parser needs semantic information, not just grammar

• Use a covering grammar

\[factor ::= id \ (\ commaSeparatedList \) \mid ... \]

and fix/check later when more information is available (e.g., types)
Top-Down Parsing Concluded

- Works with a smaller set of grammars than bottom-up, but can be done for most sensible programming language constructs
 - Possibly with some grammar refactoring
 - And maybe a little cheating (occasional extra lookahead, ...)
- If you need to write a quick-n-dirty parser, recursive descent is often the method of choice
 - And some sophisticated hand-written parsers for real languages (e.g., C++) are “based on” LL parsing, but with lots of customizations
Parsing Concluded

• That’s it!
• On to the rest of the compiler
• Coming attractions
 – Intermediate representations (ASTs etc.)
 – Semantic analysis (including type checking)
 – Symbol tables
 – & more...