Administrivia 1

• 2 handouts today
 – Slides for lecture
 – Hw1 sample solution

• Scanners due tomorrow, 11 pm – how’s it going?
 – Be sure to implement both kinds of comments
 • Must read MiniJava overview as well as scanner assignment
 – Remember if error, print message and continue, but no “error” or “comment” tokens
 – Be sure to terminate with correct code (0=ok, 1=errors)

• Project on discussion board, email, office hours
 – Wrong: “I am confused/have a question”
 – Right: “we are confused/have a question” 😊
Administrivia 2

• Schedule:
 – Today and in sections tomorrow: LR parsing and LR parser construction
 – HW2 (LR parsing) out Fri., due Thur. next week
 – Friday/Monday: LR parsing wrapup, first/follow, abstract syntax trees and visitor pattern
 – Next part of the project, Parser + AST visitors, out early of next week, due in a week and a half later
 • More details in lecture and sections next week
Agenda

• LR(0) state construction
• FIRST, FOLLOW, and nullable
• Variations: SLR, LR(1), LALR
LR State Machine

• Idea: Build a DFA that recognizes handles
 – Language generated by a CFG is generally not regular, but
 – Language of handles for a CFG is regular
 • So a DFA can be used to recognize handles
 – LR Parser reduces when DFA accepts a handle
Prefixes, Handles, &c (review)

• If S is the start symbol of a grammar G,
 – If $S \Rightarrow^* \alpha$ then α is a *sentential form* of G
 – γ is a *viable prefix* of G if there is some derivation
 $S \Rightarrow^*_{rm} \alpha Aw \Rightarrow^*_{rm} \alpha \beta w$ and γ is a prefix of $\alpha \beta$.
 – The occurrence of β in $\alpha \beta w$ is a *handle* of $\alpha \beta w$

• An *item* is a marked production (a . at some position in the right hand side)
 – $[A ::= . X Y] \ [A ::= X . Y] \ [A ::= X Y .]$
Building the LR(0) States

• Example grammar

\[S' ::= S \$ \]
\[S ::= (\ L \) \]
\[S ::= x \]
\[L ::= S \]
\[L ::= L , S \]

– We add a production \(S' \) with the original start symbol followed by end of file (\$)

• We accept if we reach the end of this production

– Question: What language does this grammar generate?
Start of LR Parse

• Initially
 – Stack is empty
 – Input is the right hand side of S', i.e., S
 – Initial configuration is $[S' ::= . S]$
 – But, since position is just before S, we are also just before anything that can be derived from S
Initial state

- A state is just a set of items
 - Start: an initial set of items
 - Completion (or closure): additional productions whose left hand side appears immediately to the right of a dot in some item already in the state

0. \(S' ::= S \$
1. \(S ::= (L) \)
2. \(S ::= x \)
3. \(L ::= S \)
4. \(L ::= L, S \)

\[
\begin{align*}
S' & ::= . S \$
S & ::= . (L)
S & ::= . x
\end{align*}
\]
Shift Actions (1)

- To shift past the x, add a new state with appropriate item(s), including their closure
 - In this case, a single item; the closure adds nothing
 - This state will lead to a reduction since no further shift is possible

\[
\begin{align*}
S' &::= . \ S \$
S &::= . \ (\ L)
S &::= . \ x
\end{align*}
\]

0. \(S' ::= S\$
1. \(S ::= (\ L)
2. \(S ::= x
3. \(L ::= S
4. \(L ::= L, S

UW CSE 401/M501 Autumn 2018
Shift Actions (2)

- If we shift past the (, we are at the beginning of L
- The closure adds all productions that start with L, which also requires adding all productions starting with S

0. $S' ::= S$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L, S$

```
S' ::= . S$
S ::= . ( L )
S ::= . x
```
Goto Actions

- Once we reduce S, we’ll pop the rhs from the stack exposing the first state. Add a *goto* transition on S for this.

$$
\begin{align*}
S' &::= . S$ \\
S &::= . (L) \\
S &::= . x
\end{align*}
$$

0. $S'::= S$ \\
1. $S::= (L)$ \\
2. $S::= x$ \\
3. $L::= S$ \\
4. $L::= L, S$
Basic Construction Operations

• **Closure** \((S)\)
 – Adds all items implied by items already in \(S\)

• **Goto** \((I, X)\)
 – \(I\) is a set of items
 – \(X\) is a grammar symbol (terminal or non-terminal)
 – **Goto** moves the dot past the symbol \(X\) in all appropriate items in set \(I\)
Closure Algorithm

• Closure (S) =

 repeat
 for any item [A ::= α . B β] in S
 for all productions B ::= γ
 add [B ::= . γ] to S
 until S does not change

 return S

• Classic example of a fixed-point algorithm
Goto Algorithm

• Goto \(I, X) = \)

 set \textit{new} to the empty set
 for each item \([A ::= \alpha \cdot X \cdot \beta]\) in \(I\)
 add \([A ::= \alpha X \cdot \beta]\) to \textit{new}
 return \textit{Closure (new)}

• This may create a new state, or may return an existing one
LR(0) Construction

• First, augment the grammar with an extra start production $S' ::= S \,$
• Let T be the set of states
• Let E be the set of edges
• Initialize T to $\text{Closure}\left([S' ::= .\ S\]\right)$
• Initialize E to empty
LR(0) Construction Algorithm

repeat
 for each state I in T
 for each item $[A ::= \alpha \cdot X \beta]$ in I
 Let new be $Goto(I, X)$
 Add new to T if not present
 Add $I \xrightarrow{X} new$ to E if not present
 until E and T do not change in this iteration

• Footnote: For symbol $\$, we don’t compute $goto(I, \$)$; instead, we make this an $accept$ action.
Example: States for

0. $S' ::= S \$
1. $S ::= (\ L \)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L, S$
Building the Parse Tables (1)

• For each edge $I \xrightarrow{X} J$
 – if X is a terminal, put sj in column X, row I of the action table (shift to state j)
 – If X is a non-terminal, put gj in column X, row I of the goto table
Building the Parse Tables (2)

- For each state l containing an item $[S' ::= S \cdot \$]$, put **accept** in column $\$ of row l
- Finally, for any state containing $[A ::= \gamma \cdot]$ put action rn (reduce) in every column of row l in the table, where n is the *production* number
Example: Tables for

0. \(S' ::= S \$
1. \(S ::= (L) \)
2. \(S ::= x \)
3. \(L ::= S \)
4. \(L ::= L, S \)
Where Do We Stand?

• We have built the LR(0) state machine and parser tables
 – No lookahead yet
 – Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same

• A grammar is LR(0) if its LR(0) state machine (equiv. parser tables) has no shift-reduce or reduce-reduce conflicts.
A Grammar that is not LR(0)

• Build the state machine and parse tables for a simple expression grammar

\[
S ::= E \\
E ::= T + E \\
E ::= T \\
T ::= x
\]
LR(0) Parser for

0. $S ::= E \$$
1. $E ::= T + E$
2. $E ::= T$
3. $T ::= x$

State 3 is has two possible actions on +
 - shift 4, or reduce 2
 - . Grammar is not LR(0)
How can we solve conflicts like this?

- Idea: look at the next symbol after the handle before deciding whether to reduce
- Easiest: SLR – Simple LR. Reduce only if next input terminal symbol could follow resulting nonterminal
- More complex: LR and LALR. Store lookahead symbols in items to keep track of what can follow a particular instance of a reduction
 - LALR used by YACC/Bison/CUP; we won’t examine in detail
SLR Parsers

• Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction; don’t reduce if the next input symbol can’t follow the resulting non-terminal

• We need to be able to compute FOLLOW(A) – the set of terminal symbols that can follow A in any possible derivation
 – i.e., t is in FOLLOW(A) if any derivation contains At
 – To compute this, we need to compute FIRST(γ) for strings γ that can follow A
Calculating FIRST(γ)

• Sounds easy... If γ = X Y Z, then FIRST(γ) is FIRST(X), right?

 – But what if we have the rule X ::= ε?
 – In that case, FIRST(γ) includes anything that can follow X, i.e. FOLLOW(X), which includes FIRST(Y) and, if Y can derive ε, FIRST(Z), and if Z can derive ε, ...
 – So computing FIRST and FOLLOW involves knowing FIRST and FOLLOW for other symbols, as well as which ones can derive ε.
FIRST, FOLLOW, and nullable

• nullable(\(X\)) is true if \(X\) can derive the empty string
• Given a string \(\gamma\) of terminals and non-terminals, \(\text{FIRST}(\gamma)\) is the set of terminals that can begin strings derived from \(\gamma\)
 – For SLR we only need this for single terminal or non-terminal symbols, not arbitrary strings \(\gamma\)
• \(\text{FOLLOW}(X)\) is the set of terminals that can immediately follow \(X\) in some derivation
• All three of these are computed together
Computing FIRST, FOLLOW, and nullable (1)

• Initialization
 set FIRST and FOLLOW to be empty sets
 set nullable to false for all non-terminals
 set FIRST[a] to a for all terminal symbols a

• Repeatedly apply four simple observations to update these sets
 – Stop when there are no further changes
 – Another fixed-point algorithm
Computing FIRST, FOLLOW, and nullable (2)

repeat
 for each production \(X := Y_1 Y_2 \ldots Y_k \)
 if \(Y_1 \ldots Y_k \) are all nullable (or if \(k = 0 \))
 set nullable\([X]\) = true
 for each \(i \) from 1 to \(k \) and each \(j \) from \(i + 1 \) to \(k \)
 if \(Y_1 \ldots Y_{i-1} \) are all nullable (or if \(i = 1 \))
 add \(\text{FIRST}[Y_i] \) to \(\text{FIRST}[X] \)
 if \(Y_{i+1} \ldots Y_k \) are all nullable (or if \(i = k \))
 add \(\text{FOLLOW}[X] \) to \(\text{FOLLOW}[Y_i] \)
 if \(Y_{i+1} \ldots Y_{j-1} \) are all nullable (or if \(i+1=j \))
 add \(\text{FIRST}[Y_j] \) to \(\text{FOLLOW}[Y_i] \)
 Until FIRST, FOLLOW, and nullable do not change
Example

• Grammar

\[
Z ::= d \\
Z ::= X Y Z \\
Y ::= \varepsilon \\
Y ::= c \\
X ::= Y \\
X ::= a
\]

nullable \quad FIRST \quad FOLLOW

\[
X \\
Y \\
Z
\]
LR(0) Reduce Actions (review)

• In a LR(0) parser, if a state contains a reduction, it is unconditional regardless of the next input symbol

• Algorithm:

 Initialize R to empty
 for each state I in T
 for each item $[A ::= \alpha.]$ in I
 add $(I, A ::= \alpha)$ to R
SLR Construction

• This is identical to LR(0) – states, etc., except for the calculation of reduce actions

• Algorithm:
 Initialize R to empty
 for each state I in T
 for each item $[A ::= a .]$ in I
 for each terminal a in FOLLOW(A)
 add $(I, a, A ::= a)$ to R
 – i.e., reduce a to A in state I only on lookahead a
SLR Parser for

0. $S ::= E \cdot$
1. $E ::= T \cdot + E$
2. $E ::= T \cdot$
3. $T ::= x$

UW CSE 401/M501 Autumn 2018

E-34
On To LR(1)

• Many practical grammars are SLR
• LR(1) is more powerful yet
• Similar construction, but notion of an item is more complex, incorporating lookahead information
LR(1) Items

• An LR(1) item \([A ::= \alpha \cdot \beta, a]\) is
 – A grammar production \((A ::= \alpha \beta)\)
 – A right hand side position (the dot)
 – A lookahead symbol (a)
• Idea: This item indicates that \(\alpha\) is the top of
 the stack and the next input is derivable from \(\beta a\).
• Full construction: see the book
LR(1) Tradeoffs

• LR(1)
 – Pro: extremely precise; largest set of grammars
 – Con: potentially very large parse tables with many states
LALR(1)

• Variation of LR(1), but merge any two states that differ only in lookahead
 – Example: these two would be merged

```plaintext
[A ::= x . , a]
[A ::= x . , b]
```

LALR(1) vs LR(1)

• LALR(1) tables can have many fewer states than LR(1)
 – Somewhat surprising result: will actually have same number of states as SLR parsers, even though LALR(1) is more powerful because of lookahead info in states
 – After the merge step, acts like SLR parser with “smarter” FOLLOW sets (may be specific to particular handles)
• LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn’t happen often)
• Most practical bottom-up parser tools are LALR(1) (e.g., yacc, bison, CUP, ...)

Language Heirarchies

unambiguous grammars

LL(k) ⊃ LR(k)

LL(1) ⊃ LR(1)

LALR(1)

SLR

LL(0) ⊃ LR(0)

ambiguous grammars
Coming Attractions

Lecture

• ASTs and Visitor pattern
• LL(k) Parsing – Top-Down
• Recursive Descent Parsers
 – What you can do if you want a parser in a hurry

Sections

• AST construction – what do do while you parse!
• Visitor Pattern details – how to traverse ASTs for further processing (type checking, code gen, ...)