
 CSE 401 Midterm Exam 2/19/10 Sample Solution

 Page 1 of 6

Question 1. (18 points) In FORTRAN, a floating-point numeric constant must contain a
decimal point or an exponent or both to distinguish it from an integer. The exponent uses
the letter E or e to indicate a single-precision constant and the letter D or d to indicate
double-precision. A floating-point constant without an exponent is taken to be single
precision. Some examples of floating-point constants: 3.14 1. 1.0 01e2
6.023D23 3.5E-12 1.0d+6 .1e-001 000.000d00 Some examples
that are not floating-point constants: 17 (no decimal point or exponent),
1,000,000.00 (contains commas), -17.0 (unary minus operator followed by a
constant), .e02 (no digits before the exponent), e02 (an identifier, not a number).

(a) (9 points) Give a regular expression for FORTRAN floating-point constants as
described above. You may only use basic regular expression operators (concatenation
rs, choice r|s, Kleene star r*) and the additional operators r+ and r?. You may also
specify character sets using the notation [abw-z], and sets excluding specified
characters [^aeiou]. Finally, you can name parts of the regular expression, like
vowel=[aeiou].

 dec = [0-9]+ . [0-9]* | [0-9]+

 exp = [eEdE] [+ -]? [0-9]+

 float = {dec} {exp}? | [0-9]+ {exp}

 (b) (9 points) Draw a DFA (Deterministic Finite Automata) that recognizes FORTRAN
floating-point constants as described in the problem and generated by the regular
expression in your answer to part (a).

0-9

0-9

0-9
0-9

0-9

0-9

0-9 eEdD

eEdD

+ -
.

.

 CSE 401 Midterm Exam 2/19/10 Sample Solution

 Page 2 of 6

Question 2. (24 points) The you’re-probably-not-surprised-to-see-it LR-parsing
question. Here is a tiny grammar that gives the essence of expressions with optional
parentheses and optional casts preceding the expression.

 0. exp′ ::= exp $
 1. exp ::= id
 2. exp ::= (exp)
 3. exp ::= (id) exp

(a) (18 points) Draw the LR(0) state machine for this grammar. You do not need to write
out the parser tables or first/follow/nullable sets, although you can do that if it helps you
to answer the remaining parts of the question on the next page.

(continued on next page)

exp' ::= . exp $
exp ::= . id
exp ::= . (exp)
exp ::= . (id) exp

exp' ::= exp . $

exp ::= id .

exp ::= (. exp)
exp ::= (. id) exp
exp ::= . id
exp ::= . (exp)
exp ::= . (id) exp

exp ::= (id .) exp
exp ::= id .

exp ::= (exp .)

exp ::= (exp) .

exp ::= (id) . exp
exp ::= . id
exp ::= . (exp)
exp ::= . (id) exp exp ::= (id) exp .

exp

id

exp

exp

(

id

)

(

)

(

id

*

 CSE 401 Midterm Exam 2/19/10 Sample Solution

 Page 3 of 6

Question 2. (cont.) Grammar repeated from previous page for reference.

 0. exp′ ::= exp $
 1. exp ::= id
 2. exp ::= (exp)
 3. exp ::= (id) exp

(b) (3 points) Is this grammar LR(0)? Why or why not?

No. The state labeled * has a shift-reduce conflict.

(c) (3 points) Is this grammar SLR? Why or why not?

No. The grammar would be SLR if we could use the contents of FOLLOW(exp) to
resolve the situation. But FOLLOW(exp) contains ‘)’, so that doesn’t get rid of the
shift-reduce conflict in that state.

Question 3. (16 points) Parsing tools. In CUP and similar tools we can use precedence
declarations to resolve ambiguities and precedence issues in grammars. Here is a CUP
specification for integer expressions with PLUS (+), TIMES (*), and POWER (^), where
PLUS and TIMES associate to the left (i.e., a+b+c means (a+b)+c) and POWER
(exponentiation) associates to the right (i.e., a^b^c means a^(b^c)). As usual,
TIMES has higher precedence than PLUS, and POWER has the highest precedence. INT
is the terminal symbol for integers.

 precedence left PLUS;
 precedence left TIMES;
 precedence right POWER;

 expr ::= expr PLUS expr | expr TIMES expr
 | expr POWER expr | INT ;

For this problem, give an unambiguous context free grammar without precedence
declarations that generates expressions with the same precedence and associativity as in
the CUP specification above. You only need to give ordinary grammar rules – they do
not need to be a properly formatted CUP specification.

(Hint: you may find it useful to introduce additional non-terminals into your grammar.)

 expr ::= term | expr PLUS term

 term ::= expon | term TIMES expon

 expon ::= INT | INT POWER expon

 CSE 401 Midterm Exam 2/19/10 Sample Solution

 Page 4 of 6

Some short questions.

Question 4. (10 points) Compilers almost always do parsing and semantics/type
checking in separate phases of the compiler. Give two distinct reasons why this
separation into phases is done. Your reasons could be technical examples of things that
can only be done in one phase but not the other, or engineering reasons why this is a good
design, or similar persuasive arguments.

Engineering: it is better modularity to separate the two jobs so the parser and
semantics checker can each do one thing well. Easier to get right, easier to
maintain, etc.

There are many things we need to check that aren’t captured by a context-free
specification. These either can’t be done in the parser, or require a great deal of
extra machinery or backtracking. Examples include checking whether variables are
properly declared, checking for type compatibility in expressions and assignment
statements, checking whether a method call has the right number and types of
parameters, etc. Two of these reasons could have been used to answer the question.

Question 5. (8 points) We suggested using at least two separate passes over the AST to
check semantics and types in a MiniJava program. Why not do it in one pass? Is there
some technical reason why two passes are needed or at least very helpful?

In MiniJava, class names can be used before their classes are declared. A first pass
to collect class names before a second pass doing detailed checking greatly simplifies
the job. If we try to do it in one pass we have to be prepared to backtrack and
recheck things once we find the declaration for a class whose name has been
previously used.

 CSE 401 Midterm Exam 2/19/10 Sample Solution

 Page 5 of 6

Question 6. (8 points) In full Java, the declaration of a field in a class can be preceded
various modifiers. The possibilities are: public, protected, private,
static, final, transient, and volatile. These modifiers may appear in
any order. A compiler is required to check that in any single declaration no modifier
appears more than once, and that at most one of the access modifiers public,
protected, or private is used. Would it be best to put this check in the scanner, the
parser, or in the static semantics part of the compiler? Give a technical justification for
your answer.

The most reasonable place to do this is during the semantics pass.

The scanner can’t do it since it has no context to interpret tokens.

It would be possible to construct a grammar that would accept only legal
combinations of modifiers, but that would require an enormous number of rules to
handle all possible permutations. It would be clumsy to put this in the parser, along
with all of the redundant semantics action code associated with the grammar rules.

It’s best to let the parser simply accept any sequence of modifiers, then have the
semantics pass check that the rules about no duplicates are followed.

 CSE 401 Midterm Exam 2/19/10 Sample Solution

 Page 6 of 6

Question 7. (16 points) Abstract syntax and semantics. Here is the abstract syntax for a
fragment of a MiniJava program.

(a) (4 points) What is the Java source code that corresponds to this abstract syntax? i.e.,
what is the original concrete syntax fragment that the scanner and parser read to produce
the above tree, including all necessary punctuation to make it legal Java code?

 while (p && q)
 n = 17;

(b) (12 points) What checks need to be performed in the static semantics/typechecking
phase of the compiler to verify that this abstract syntax is, in fact, legal and contains no
type errors or other static semantics problems? A good way to show your answer is to
annotate the above diagram to show the checks that need to be performed at each location
in the AST. Or you can write your answer below.

See diagram above.

while

&& assign

id: p id: q id: n int: 17

Check that
identifiers are
declared

Check that
both operands
are boolean

Check that expression
type is compatible
with lhs type and lhs
is a lvalue

Check that type of
expression is boolean

