
CSE	401	Final,	March	14,	2017	 Page	1	of	17	

CSE	401	Final	Exam	
	

March	14,	2017	
Happy	π	Day!	(3/14)	

	

Name	___	
	
	

This	exam	is	closed	book,	closed	notes,	closed	electronics,	closed	neighbors,	open	mind,	
	 	
Please	wait	to	turn	the	page	until	everyone	has	their	exam	and	you	have	been	told	to	begin.			
	
If	you	have	questions	during	the	exam,	raise	your	hand	and	someone	will	come	to	you.			
	
Legibility	is	a	plus,	as	is	showing	your	work.		We	can’t	read	your	mind,	but	we’ll	try	to	make	sense	of	
what	you	write.	
	

	

1	 /	15	

2	 /	15	

3	 /	14	

4	 /	14	

5	 /	16	

6	 /	14	

7	 /	14	

8	 /	12	

9	 /	6	

Total	 /	120	

	
	

CSE	401	Final,	March	14,	2017	 Page	2	of	17	

Question	1.	(15	points)		Virtual	madness.		Consider	the	following	Java	program.		
	
public class Vtables {
 public static void main(String[] args) {
 Derived d = new Derived();
 Base b = d;
 b.one();
 System.out.println("***");
 b.two();
 System.out.println("***");
 d.four();
 }
}

class Base {
 public void one() { System.out.println("Base.one"); }
 public void two() { one(); System.out.println("Base.two"); }
 public void three() { System.out.println("Base.three"); }
}

class Derived extends Base {
 public void one() { System.out.println("Derived.one"); }
 public void four() { two(); System.out.println("Derived.four"); }

}	
	
When	class	Base	was	compiled,	the	compiler	picked	the	following	trivial	layout	for	objects	of	type	
Base	(since	only	a	vtable	pointer	is	needed),	and	generated	the	following	vtable	for	that	class:	
	

	 Object	Layout	 	 	 Vtable	layout	 	
offset	 field	 	 Base$$: .quad 0 #	no	superclass	

+0	 vtable	pointer	 	 .quad Base$one #	+8	
	 	 .quad Base$two #	+16	
	 	 .quad Base$three #	+24	

	
Answer	questions	about	this	program	on	the	next	page.		You	may	remove	this	page	for	reference	while	
you	are	working.	
	
	 	

CSE	401	Final,	March	14,	2017	 Page	3	of	17	

Question	1.	(cont.)	(a)	(4	points)	Show	the	vtable	layout	for	class	Derived	using	the	same	format	used	
on	the	previous	page	for	class	Base.		Be	sure	to	properly	account	for	the	methods	inherited	from	class	
Base,	including	those	that	are	overridden.	
	
	
	
	
	
	
	
	
	
	
	
	
	
(b)	(5	points)	What	output	is	produced	when	we	execute	the	main	method	in	class	Vtables?		(i.e.,	
what	happens	when	we	execute	the	program?)	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
(continued	on	next	page)	
	
	 	

CSE	401	Final,	March	14,	2017	 Page	4	of	17	

Question	1	(cont.)	(c)	(6	points)	OK,	now	for	the	truly	evil	“trick”	question.	J	
	

The	new	intern,	I.	M.	Pedantic,	has	decided	that	things	would	be	much	easier	to	understand	if	vtables	
were	neatly	organized	in	alphabetical	order,	instead	of	the	order	previously	used	by	the	compiler.		So	
the	compiler	has	been	changed	to	generate	the	following	vtables	for	classes	Base	and	Derived:	
	
Base$$: .quad 0 Derived$$: .quad Base$$ # superclass
 .quad Base$one .quad Derived$four +8
 .quad Base$three .quad Derived$one +16
 .quad Base$two .quad Base$three +24
 .quad Base$two +32

	
As	before,	every	object	contains	a	pointer	to	the	vtable	for	its	class.		Further,	Pedantic	did	not	change	
the	dynamic	dispatch	code	generated	by	the	compiler	to	call	methods,	which	continues	to	use	the	
pointer	in	each	object	to	find	the	object’s	vtable	and	the	pointers	found	there	to	call	methods.	
	

The	question	is,	what	does	this	program	print	if	the	vtables	contents	are	changed	this	way?			
	

Hint	1:	remember	that	the	code	for	methods	in	each	class	is	compiled	using	the	known	vtable	
information	for	the	class,	and	code	generated	for	the	main	method	will	use	the	declared	types	of	
variables	to	decide	which	vtable	offsets	contain	the	appropriate	pointers	to	methods.		
	

Hint	2:	Your	answers	may	well	be	different	from	the	expected	output	that	would	be	produced	by	a	
correct	Java	compiler.		But	there	is	a	single	answer	to	this	question.	
	

CSE	401	Final,	March	14,	2017	 Page	5	of	17	

Question	2.		(15	points)		Compiler	hacking:	a	question	of	several	parts.		Clearly	our	MiniJava	compiler	is	
missing	several	useful	Java	features.		One	of	our	customers	would	like	us	to	add	the	?:	ternary	operator	
that	exists	in	Java,	C,	C++,	and	other	languages.		The	meaning	of	e1	?	e2	:	e3	is	that	e1	is	first	evaluated.		
If	it	is	true,	then	e2	is	evaluated	and	that	is	the	value	of	the	expression.		If	e1	is	false,	then	e3	is	
evaluated	and	that	is	the	value	of	the	overall	expression.		To	add	this	to	MiniJava,	we	need	to	add	one	
new	production	to	the	MiniJava	grammar:	
	

		 Expression	::=	Expression	“?”	Expression	“:”	Expression	
	

(a)		(2	points)	What	new	lexical	tokens,	if	any,	need	to	be	added	to	the	scanner	and	parser	of	our	
MiniJava	compiler	to	add	this	new	expression	to	the	original	MiniJava	language?		Just	describe	any	
necessary	changes;	you	don’t	need	to	give	JFlex	or	CUP	specifications	or	code.		The	full	MiniJava	
grammar	is	attached	as	the	last	page	of	this	exam	if	you	need	to	refer	to	it.	
	
	
	
	
(b)	(3	points)	What	changes	are	needed	to	the	MiniJava	abstract	syntax	tree	(AST)	data	structures	to	add	
this	new	expression	to	MiniJava?		Again,	you	do	not	need	to	give	any	Java	or	CUP	code,	just	describe	the	
changes	(what	kinds	of	new	or	changed	nodes,	what	children	would	they	have,	etc.).		
	
	
	
	
	
	
	
(c)	(4	points)	What	checks	need	to	be	performed	to	verify	that	there	are	no	type	compatibility	or	other	
semantic	errors	for	this	new	expression?	Hint:	remember	that	MiniJava	is	statically	typed,	so	this	new	
expression	must	have	a	definite	type	like	all	other	expressions.	
	
	
	
	
	
	
	
	
	
	
	
(continued	next	page)

CSE	401	Final,	March	14,	2017	 Page	6	of	17	

Question	2.	(cont.)		(d)		(6	points)	Describe	the	x86-64	code	shape	for	this	added	?:	expression	that	
would	be	generated	by	a	MiniJava	compiler.		Your	answer	should	be	similar	in	format	to	the	descriptions	
we	used	in	class	for	other	language	constructs.	If	needed,	you	should	assume	that	the	code	generated	
for	an	expression	will	leave	the	value	of	that	expression	in	%rax,	as	we	did	in	the	MiniJava	project.		
Also,	if	it	matters,	you	can	assume	that	the	stack	is	aligned	on	a	16-byte	boundary	at	the	beginning	of	
the	code	sequence,	and,	if	you	change	the	size	of	the	stack,	you	need	to	be	sure	this	alignment	is	
preserved	if	a	part	of	the	?:	expression	could	contain	a	method	call.	
	
Use	Linux/gcc	x86-64	instructions	and	assembler	syntax	when	needed.		However,	remember	that	the	
question	is	asking	for	the	code	shape	for	this	expression,	so	using	things	like	Jfalse,	for	example,	to	

indicate	control	flow,	instead	of	pure	x86-64	machine	instructions,	is	fine	as	long	as	the	meaning	is	clear.		
If	you	need	to	make	any	additional	assumptions	about	code	generated	by	the	rest	of	the	compiler	you	
should	state	them.	
	

CSE	401	Final,	March	14,	2017	 Page	7	of	17	

Question	3.	(14	points)		x86-64	coding.		Consider	the	following	class:	
	
class Foo {
 public int maxv(int x, int y) {
 if (x < y)
 return x;
 else if (y < x)
 return this.maxv(y, x);
 else
 return x;
 }
}	
	

On	the	next	page,	translate	method	maxv	into	x86-64	assembly	language.		You	should	use	the	standard	
runtime	conventions	for	parameter	passing	(including	the	this	pointer),	register	usage,	and	so	forth	
that	we	used	in	the	MiniJava	project,	including	using	%rbp	as	a	stack	frame	pointer.		Since	class	Foo	has	
only	one	method,	maxv,	you	should	assume	that	the	vtable	layout	for	the	class	has	a	single	pointer	to	
this	method	at	offset	+8.	
	

call	instruction	hints:	Recall	that	if	%rax	contains	a	pointer	to	(i.e.,	the	memory	address	of)	the	first	
instruction	in	a	method,	then	you	can	call	the	method	by	executing	call *%rax.		If	%rax	contains	
the	address	of	a	vtable,	we	can	call	a	method	whose	pointer	is	at	offset	d	in	that	vtable	by	executing	
call *d(%rax).	
	

Reference	and	ground	rules	for	x86-64	code,	(same	as	for	the	MiniJava	project	and	other	x86-64	code):	
• You	must	use	the	Linux/gcc	assembly	language,	and	must	follow	the	x86-64	function	call,	

register,	and	stack	frame	conventions.	
o Argument	registers:		%rdi, %rsi, %rdx, %rcx, %r8, %r9 in	that	order	
o Called	function	must	save	and	restore		%rbx, %rbp,	and	%r12-%r15	if	these	are	

used	in	the	function	
o Function	result	returned	in	%rax	
o %rsp	must	be	aligned	on	a	16-byte	boundary	when	a	call	instruction	is	executed		
o %rbp	must	be	used	as	the	base	pointer	(frame	pointer)	register	for	this	question,	even	

though	this	is	not	strictly	required	by	the	x86-64	specification.	
• Pointers	and	ints	are	64	bits	(8	bytes)	each,	as	in	MiniJava.	
• Your	x86-64	code	must	implement	all	of	the	statements	in	the	original	method.		You	may	not	

rewrite	the	method	into	a	different	form	that	produces	equivalent	results	(i.e.,	restructuring	or	
reordering	the	code).		Other	than	that,	you	can	use	any	reasonable	x86-64	code	that	follows	the	
standard	function	call	and	register	conventions	–	you	do	not	need	to	mimic	the	code	produced	
by	your	MiniJava	compiler.	

• Please	include	brief	comments	in	your	code	to	help	us	understand	what	the	code	is	supposed	to	
be	doing	(which	will	help	us	assign	partial	credit	if	it	doesn’t	do	exactly	what	you	intended.)	

	
(You	may	detach	this	page	from	the	exam	if	that	is	convenient.)		

CSE	401	Final,	March	14,	2017	 Page	8	of	17	

Question	3.	(cont.)		Write	your	translation	of	method	maxv	into	x86-64	assembly	language	below.
	
	 	

CSE	401	Final,	March	14,	2017	 Page	9	of	17	

Question	4.		(14	points)		A	little	optimization.		For	this	question	we’d	like	to	perform	local	constant	
propagation	and	folding,	plus	copy	propagation	(reuse	values	that	are	already	present	in	another	
temporary	ti	when	possible)	and	dead	code	elimination.			
	
The	first	column	of	the	table	below	gives	the	three-address	code	generated	for	the	statements	
x = 5; a[i] = a[i]+ x;	.		
	
(a)	Fill	in	the	second	column	with	the	code	from	the	first	column	after	any	changes	due	to	constant	
propagation	and	folding	(compile-time	arithmetic),	and	copy	propagation.		(Note:	memory	accesses	
must	involve	a	temporary	ti	and	a	memory	address;	they	cannot	load/store	a	constant	like	5	directly.)	
	
(b)	In	the	third	column,	check	the	box	“deleted”	if	the	statement	would	be	deleted	by	dead	code	
elimination	after	performing	the	constant	propagation/folding	and	copy	optimizations	in	part	(a).	
	

Original	Code	 After	constant	propagation	&	folding	&	copy	propagation	
“X”	if	deleted	
as	dead	code	

t1	=	5	 	 	

*(fp	+	xoffset)	=	t1				//	x	=	…	 	 	

t2	=	*(fp	+	ioffset)					//	i	 	 	

t3	=	t2	*	4	 	 	

t4	=	fp	+	t3	 	 	

t5	=	*(t4	+	aoffset)				//	a[i]	 	 	

t6	=	*(fp	+	xoffset)				//	x	 	 	

t7	=	t5	+	t6																	//	a[i]	+	x	 	 	

t8	=	*(fp	+	ioffset)				//	i	 	 	

t9	=	t8	*	4	 	 	

t10	=	fp	+	t9	 	 	

*(t10	+	aoffset)	=	t7		//	a[i]=…	 	 	

	
	
	
	 	

CSE	401	Final,	March	14,	2017	 Page	10	of	17	

The	next	two	questions	concern	the	following	control	flow	graph:	
	

	
	
	
Question	5.	(16	points)	Dataflow	analysis.		Recall	from	lecture	that	live-variable	analysis	determines	for	
each	point	p	in	a	program	which	variables	are	live	at	that	point.		A	live	variable	v	at	point	p	is	one	where	
there	exists	a	path	from	point	p	to	another	point	q	where	v	is	used	without	v	being	redefined	anywhere	
along	that	path.		The	sets	for	the	live	variable	dataflow	problem	are:	
	
	 use[b]	=	variables	used	in	block	b	before	any	definition	
	 def[b]	=	variables	defined	in	block	b	and	not	later	killed	in	b		
	 in[b]	=	variables	live	on	entry	to	block	b		
	 out[b]	=	variables	live	on	exit	from	block	b		
	
The	dataflow	equations	for	live	variables	are	
	
	 in[b]	=	use[b]	∪	(out[b]	–	def[b])	
	 out[b]	=	∪	s	∈	succ[b]	in[s]	
	
On	the	next	page,	calculate	the	use	and	def	sets	for	each	block,	then	solve	for	the	in	and	out	sets	of	each	
block.		A	table	is	provided	with	room	for	the	use	and	def	sets	for	each	block	and	up	to	three	iterations	of	
the	main	algorithm	to	solve	for	the	in	and	out	sets.		If	the	algorithm	does	not	converge	after	three	
iterations,	use	additional	space	below	the	table	for	additional	iterations.	
	
Then	remember	to	answer	the	undefined	variable	question	at	the	bottom	of	the	page.	
	
Hint:	remember	that	live-variables	is	a	backwards	dataflow	problem,	so	the	algorithm	should	update	the	
sets	from	the	end	of	the	flowgraph	towards	the	beginning	to	reduce	the	total	amount	of	work	needed.	
	
You	may	remove	this	page	for	reference	while	working	these	problems.	
	 	

a		=	5	

b	=	a	+	1	
c	=	1	

b	=	3	+	a	
c	=	b	+	c	

a	=	b	+	c	
print	a	

B0	

B1	 B2	

B3	

CSE	401	Final,	March	14,	2017	 Page	11	of	17	

Question	5.	(cont.)		(a)	(14	points)		Write	the	results	of	calculations	for	live	variables	in	the	chart	below.		
Use	the	rest	of	the	page	for	extra	space	if	needed,	then	remember	to	answer	part	(b)	at	the	bottom!	
	

Block	 use	 def	 out	(1)	 in	(1)	 out	(2)	 in	(2)	 out	(3)	 in	(3)	

B3	 	 	 	 	 	 	 	 	

B2	 	 	 	 	 	 	 	 	

B1	 	 	 	 	 	 	 	 	

B0	 	 	 	 	 	 	 	 	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
(b)	(2	points)		One	use	of	live	variable	analysis	is	to	detect	potential	use	of	uninitialized	variables	in	a	
program.		Are	there	any	potentially	uninitialized	variables	in	this	flowgraph,	and	if	so	which	ones,	where,	
and	why?		(i.e.,	justify	your	answer	using	the	information	from	the	analysis	you	have	done	above.)	 	

CSE	401	Final,	March	14,	2017	 Page	12	of	17	

Question	6.	SSA.		(14	points)		Redraw	the	flowgraph	used	in	the	previous	problem	in	SSA	(static	single-
assignment)	form.		You	need	to	insert	appropriate	Φ-functions	where	they	are	required	and	add	
appropriate	version	numbers	to	all	variables.		Do	not	insert	Φ-functions	at	the	beginning	of	a	block	if	
they	clearly	would	not	be	appropriate	there,	but	we	will	not	penalize	occasionally	extra	Φ-functions	if	
they	are	inserted	correctly.		You	do	not	need	to	trace	the	steps	of	any	particular	algorithm	to	place	the	
Φ-functions	as	long	as	you	add	them	to	the	flowgraph	in	appropriate	places.	
	
	
	
	
	
	 	

CSE	401	Final,	March	14,	2017	 Page	13	of	17	

Question	7.		(14	points)	First	things	first.		We’d	like	to	use	forward	list	scheduling	to	pick	a	good	order	
for	executing	a	sequence	of	instructions.		For	this	problem,	assume	that	we’re	using	the	same	
hypothetical	machine	that	was	presented	in	lecture	and	in	the	textbook	examples.		Instructions	are	
assumed	to	take	the	following	number	of	cycles:	
	

Operation	 Cycles	
LOAD	 3	
STORE	 3	
ADD	 1	
MULT	 2	

	

Given	the	assignment	statement		y = (a*x + b)*x + c,	our	compiler’s	instruction	selection	phase	
initially	emits	the	following	sequence	of	instructions:	
	

a. LOAD	 r1	<-	a	
b. LOAD	 r2	<-	x	
c. MULT	 r1	<-	r1,	r2	 	 //	a*x	
d. LOAD	 r3	<-	b	
e. ADD				 r1	<-	r1,	r3	 	 //	a*x+b	
f. MULT		 r1	<-	r1,	r2	 	 //	(a*x+b)*x	
g. LOAD	 r2	<-	c	
h. ADD	 r1	<-	r1,	r2	 	 //	(a*x+b)*x+c	
i. STORE	 y	<-	r1	

	

Answer	the	following	questions	on	the	next	page.		You	can	remove	this	page	for	convenience	if	you	like.	
	
(a)	(6	points)	Draw	the	precedence	graph	showing	the	dependencies	between	these	instructions.		Label	
each	node	(instruction)	in	the	graph	with	the	letter	identifying	the	instruction	(a-i)	and	it’s	latency	–	the	
number	of	cycles	between	the	beginning	of	that	instruction	and	the	end	of	the	graph	on	the	shortest	
possible	path	that	respects	the	dependencies.	
	

(b)	(6	points)	Rewrite	the	instructions	in	the	order	they	would	be	chosen	by	forward	list	scheduling	(i.e.,	
choosing	on	each	cycle	an	instruction	that	is	not	dependent	on	any	other	instruction	that	has	not	yet	
been	issued	or	is	still	executing).		If	there	is	a	tie	at	any	step	when	picking	the	best	instruction	to	
schedule	next,	pick	one	of	them	arbitrarily.		Label	each	instruction	with	its	letter	and	instruction	code	
(LOAD,	ADD,	etc.)	from	the	original	sequence	above	and	the	cycle	number	on	which	it	begins	execution.			
The	first	instruction	begins	on	cycle	1.		You	do	not	need	to	show	your	bookkeeping	or	trace	the	
algorithm	as	done	in	class,	although	if	you	leave	these	clues	about	what	you	did,	it	could	be	helpful	if	we	
need	to	figure	out	how	to	assign	partial	credit.	
	
(c)	(2	points)	At	the	bottom	of	the	next	page,	write	down	the	number	of	cycles	needed	to	completely	
execute	the	instructions	in	the	original	order	and	the	number	of	cycles	needed	by	the	new	schedule.	 	

CSE	401	Final,	March	14,	2017	 Page	14	of	17	

Question	7.	(cont.)		(a)	and	(b)	Draw	the	precedence	diagram	and	write	the	new	instruction	schedule	
(sequence)	below.		Then	fill	in	part	(c)	at	the	bottom	of	the	page.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
(c)	Fill	in:		Number	of	cycles	needed	to	completely	execute	all	instructions	in	the	original	schedule	_____				
	
Number	of	cycles	needed	to	completely	execute	all	instructions	in	the	new	schedule	_____	
	
	 	

CSE	401	Final,	March	14,	2017	 Page	15	of	17	

Question	8.	(12	points)		Register	allocation.		Considering	the	following	code:	
	

a	=	read();	
b	=	read();	
if	(a	<	b)	{	
	 c	=	read();	
	 while	(c	<	a)	{	
	 	 c	=	c	+	1;	
	 }	
	 print(c);	
}	else	{	
	 d	=	a	+	b;	
	 print(d);	
}	

	

	
On	the	next	page	write	your	answer	to	the	following	questions.		You	can	remove	this	page	from	the	
exam	for	convenience	if	you	wish.	
	
(a)	(8	points)	Draw	the	interference	graph	for	the	variables	in	this	code.		You	are	not	required	to	draw	
the	control	flow	graph,	but	it	might	be	useful	to	sketch	that	to	help	find	the	solution	and	to	leave	clues	
in	case	we	need	to	assign	partial	credit.	
	
	
(b)	(4	points)	Give	an	assignment	of	variables	to	registers	using	the	minimum	number	of	registers	
possible,	based	on	the	information	in	the	interference	graph.		You	do	not	need	to	go	through	the	steps	
of	the	graph	coloring	algorithm	explicitly,	although	that	may	be	helpful	as	a	guide	to	assigning	registers.		
If	there	is	more	than	one	possible	answer	that	uses	the	minimum	number	of	registers,	any	of	them	will	
be	fine.		Use	R1,	R2,	R3,	…	for	the	register	names.	
	
	
	 write	
	
	 	 your	
	
	 	 	 answer	
	
	 	 	 	 on	
	
	 	 	 	 	 the	
	
	 	 	 	 	 	 next	
	
	 	 	 	 	 	 	 page	->	
	 	

CSE	401	Final,	March	14,	2017	 Page	16	of	17	

Question	8.	(cont.)		Draw	the	interference	graph	and	write	your	register	assignments	below	the	graph.	
	
	
	
	
	
	 	

CSE	401	Final,	March	14,	2017	 Page	17	of	17	

Question	9.	(6	points,	2	each)		Almost	done.		Time	take	out	the	garbage	at	the	end	of	the	party.		J	
	
Two	fundamental	concepts	in	a	garbage	collector	are	the	notions	of	which	objects	are	reachable	and	
which	ones	are	live.		Give	a	brief	(one	or	two	sentences	please)	definition	of	each	of	these	terms:	
	
(a)	Reachable		
	
	
	
	
	
	
	
	
(b)	Live		
	
	
	
	
	
	
	
	
(c)		What	is	the	relationship	between	these	two	concepts?		In	particular,	are	they	the	same,	or,	if	not,	
what	is	the	difference	and	does	either	concept	imply	the	other?		(Again,	a	brief	sentence	or	two	at	most,	
please.)	
	
	
	
	
	
	
	
	
	
	
	
	
	

Have a great spring break!	

The	CSE	401	staff	

