
CSE	401	–	Compilers	

Memory	Management	
and	Garbage	Collec;on	

Hal	Perkins	
Winter	2017	

UW CSE 401 Winter 2017 W-1 



References	

•  Uniprocessor	Garbage	Collec1on	Techniques	
Wilson,	IWMM	1992	(longish	survey)	

•  The	Garbage	Collec1on	Handbook		
Jones,	Hosking,	Moss,	2012	(book)	

•  Adapted	from	slides	by	Vijay	Menon,		
CSE	501,	Sp09	

UW CSE 401 Winter 2017 W-2 



Program	Memory	

Typically	divided	into	3	regions:	
•  Global	/	Sta;c:	fixed-size	at	compile	;me;	
exists	throughout	program	life;me	

•  Stack	/	Automa;c:	per	func;on,	automa;cally	
allocated	and	released	(local	variables)	

•  Heap:	Explicitly	allocated	by	programmer	
(malloc/new/cons)	
– Need	to	recover	storage	for	reuse	when	no	longer	
needed	(manual	or	automa;c)	

UW CSE 401 Winter 2017 W-3 



Manual	Heap	Management	

•  Programmer	calls	free/delete	when	done	with	
storage	

•  Pro	
– Cheap	
– Precise	

•  Con	
– How	do	we	enumerate	the	ways?	
– Buggy,	huge	debugging	costs,	pain,	…	

UW CSE 401 Winter 2017 W-4 



Garbage	Collec;on	

•  Automa;cally	reclaim	heap	memory	no	longer	
in	use	by	the	program	
– Simplify	programming	
– Be_er	modularity,	concurrency	
– Avoids	huge	problems	with	dangling	pointers	
– Almost	required	for	type	safety	
– But	not	a	panacea	–	s;ll	need	to	watch	for	stale	
pointers,	GC’s	version	of	“memory	leaks”	

UW CSE 401 Winter 2017 W-5 



Heap	Characteris;cs	

•  Most	objects	are	small	(<	128	bytes)	
•  Object-oriented	and	func;onal	code	allocates	
a	huge	number	of	short-lived	objects	

•  Want	alloca;on,	recycling	to	be	fast	and	low	
overhead	
– Serious	engineering	required	

UW CSE 401 Winter 2017 W-6 



What	is	Garbage?	

•  An	object	is	live	if	it	is	s;ll	in	use	
•  Need	to	be	conserva;ve	
– OK	to	keep	memory	no	longer	in	use	
– Not	ok	to	reclaim	something	that	is	live	

•  An	object	is	garbage	if	it	is	not	live	

UW CSE 401 Winter 2017 W-7 



Reachability	

•  Root	set	:	the	set	of	global	and	local	(stack/
register)	variables	visible	to	ac;ve	procedures	

•  Heap	objects	are	reachable		if:	
– They	are	directly	accessible	from	the	root	set	
– They	are	accessible	from	another	reachable	heap	
object	(pointers/references)	

•  Liveness	implies	reachability	(conserva;ve	
approxima;on)	

•  Not	reachable	implies	garbage	

UW CSE 401 Winter 2017 W-8 



Reachability	

•  Compiler	produces:	
– A	stack-map	at	GC	safe	points	

•  Stack	map:	enumerate	global	variables,	stack	variables,	
live	registers	(tricky	stuff!	Why?)	
•  GC	safe	points:	new(),	method	entry,	method	exit,	back	
edges	(thread	switch	points)	

– Type	informa1on	blocks	
•  Iden;fies	reference	fields	in	objects	(to	trace	the	heap)	

UW CSE 401 Winter 2017 W-9 



Tracing	Collectors	

•  Mark	the	objects	reachable	from	the	root	set,	
then	perform	a	transi;ve	closure	to	find	all	
reachable	objects	

•  All	unmarked	objects	are	dead	and	can	be	
reclaimed	

•  Various	algorithms:	mark-sweep,	copying,	
genera;onal…	

UW CSE 401 Winter 2017 W-10 



Mark-Sweep	Alloca;on	

•  Mul;ple	free	lists	organized	by	size	for	small	
objects	(8,	16,	24,	32,	…	depends	on	
alignment);	addi;onal	list	for	large	blocks	
– Regular	(manual)	malloc	does	exactly	the	same	

•  Alloca;on	
– Grab	a	free	object	from	the	right	free	list	
– No	more	memory	of	the	right	size	triggers	a	
collec;on	

UW CSE 401 Winter 2017 W-11 



Mark-Sweep	Collec;on	

•  Mark	phase	–	find	the	live	objects	
– Transi;ve	closure	from	root	set	marking	all	live	
objects	

•  Sweep	phase	
– Sweep	memory	for	unmarked	objects	and	return	
to	appropriate	free	list(s)	

UW CSE 401 Winter 2017 W-12 



Mark-Sweep	Evalua;on	

•  Pro	
– Space	efficiency	
–  Incremental	object	reclama;on	

•  Con	
– Rela;vely	slower	alloca;on	;me	
– Poor	locality	of	objects	allocated	at	around	the	
same	;me	

– Redundant	work	rescanning	long-lived	objects	
– “Stop	the	world	I	want	to	collect”	

UW CSE 401 Winter 2017 W-13 



Semispace	Copying	Collector	

•  Idea:	Divide	memory	in	half	
– Storage	allocated	from	one	half	of	memory	
– When	full,	copy	live	objects	from	old	half	(“from	
space”)	to	unused	half	(“to	space”)	&	swap	
semispaces	

•  Fast	alloca;on	–	next	chunk	of	to-space	
•  Requires	copying	collec;on	of	en;re	heap	
when	collec;on	needed	

UW CSE 401 Winter 2017 W-14 



Semispace	collec;on	

•  Same	no;on	of	root	set	and	reachable	as	in	
mark-sweep	collector	

•  Copy	each	object	when	first	encountered	
•  Install	forwarding	pointers	in	from-space	
referring	to	new	copy	in	to-space	

•  Transi;ve	closure:	follow	pointers,	copy,	and	
update	as	it	scans	

•  Reclaims	en;re	“from	space”	in	one	shot	
– Swap	from-	and	to-space	when	copy	done	

UW CSE 401 Winter 2017 W-15 



Semispace	Copying	Collector	Evalua;on	

•  Pro	
–  Fast	alloca;on	
–  Locality	of	objects	allocated	at	same	;me	
–  Locality	of	objects	connected	by	pointers	(can	use	
depth-first	or	other	strategies	during	the	mark-copy	
phase)	

•  Con	
– Wastes	half	of	memory	
–  Redundant	work	rescanning	long-lived	objects	
–  “Stop	the	world	I	want	to	collect”	

UW CSE 401 Winter 2017 W-16 



Genera;onal	Collectors	

•  Genera;onal	hypothesis:	young	objects	die	
more	quickly	than	older	ones	(Lieberman	&	
Hewi_	‘83,	Ungar	‘84)	

•  Most	pointers	are	from	younger	to	older	
objects	(Appel	‘89,	Zorn	‘90)	

•  So,	organize	heap	into	young	and	old	regions,	
collect	young	space	more	osen	

UW CSE 401 Winter 2017 W-17 



Genera;onal	Collector	

•  Divide	heap	into	two	spaces:	young,	old	
•  Allocate	new	objects	in	young	space	
•  When	young	space	fills	up,	collect	it	and	copy	
surviving	objects	to	old	space	
–  Engineering:	use	barriers	to	avoid	having	to	scan	all	of	
old	space	on	quick	collec;ons	

–  Refinement:	require	objects	to	survive	at	least	a	few	
collec;ons	before	copying	

•  When	old	space	fills,	collect	both	
•  Can	generalize	to	mul;ple	genera;ons	

UW CSE 401 Winter 2017 W-18 



GC	Tradeoffs	

•  Performance	
– Mark-sweep	osen	faster	than	semispace	
– Genera;onal	be_er	than	both	

•  Mutator	performance	
– Semispace	is	osen	fastest	
– Genera;onal	is	be_er	than	mark-sweep	

•  Overall:	genera;onal	is	a	good	balance	
•  But:	we	s;ll	“stop	the	world”	to	collect	

UW CSE 401 Winter 2017 W-19 



Recent	Research	Areas	

•  Parallel/concurrent	garbage	collec;on	
– Found	in	some	produc;on	collectors	now	

•  Tricky	stuff	–	can’t	debug	it	into	correctness	–	there	be	
theorems	here	

•  Locality	issues	
– Object	colloca;on	
– GC-;me	analysis	

•  Distributed	GC	

UW CSE 401 Winter 2017 W-20 



Compiler	&	Run;me	Support	

•  GC	;ghtly	coupled	with	safe	run;me	(e.g.,	
Java,	CLR,	func;onal	languages)	
– Total	knowledge	of	pointers	(type	safety)	
– Tagged	objects	with	type	informa;on	
– Compiler	maps	for	informa;on	
– Objects	can	be	moved;	forwarding	pointers	

UW CSE 401 Winter 2017 W-21 



What	about	unsafe	languages?		
(e.g.,	C/C++)	
•  Boehm/Weiser	collector:	GC	s;ll	possible	
without	compiler/run;me	coopera;on(!)	
–  If	it	looks	like	a	pointer,	it’s	a	pointer	
– Mark-sweep	only	–	GC	doesn’t	move	anything	
– Allows	GC	in	C/C++	but	constraints	on	pointer	bit-
twiddling	

UW CSE 401 Winter 2017 W-22 



Boehm/Weiser	Collector	

•  Useful	for	development/debugging	
– Less	burden	on	compiler/run;me	implementor	

•  Used	in	some	Java	and	.net	implementa;ons	
– Par;cularly	research	projects	

•  Similar	ideas	for	various	tools	to	detect	
memory	leaks,	etc.	

UW CSE 401 Winter 2017 W-23 



And	a	bit	of	perspec;ve…	

•  Automa;c	GC	has	been	around	since	LISP	I	in	
1958	

•  Ubiquitous	in	func;onal	and	object-oriented	
programming	communi;es	for	decades	

•  Mainstream	since	Java(?)	(mid-90s)	
•  Now	conven;onal	wisdom?	

UW CSE 401 Winter 2017 W-24 


