CSE 401 — Compilers

Compiler Backend Survey
Hal Perkins
Winter 2017

Administrivia

* Wrapup for compiler project: short report due
Saturday night at midnight(!) (no late days)

 We'll grade the compiler additions, then do an
overall evaluation of each project

— Please fix up any loose ends or lingering problems
from earlier phases before final submission

* Course evals: please do them this week

* Final exam: next Tuesday, 2:30
— Review Monday, 4:30, location TBA
— Topic list available on the course web now

Agenda

* Survey major pieces of a compiler back end
— Instruction selection
— Instruction scheduling
— Register allocation

* And three particularly neat algorithms
— Instruction selection by tree pattern matching
— Instruction list scheduling

— Register allocation by graph coloring

UW CSE 401 Winter 2017 Q-3

Compiler Organization

+||o

¢ 2l 2|8

c|l| 3B —| (]| c ol S|=

sl S| ® all&al|g all2f®

al| 8] € 1 |of|o]]|o 1155l

—_—) > > n C L
n £ K0

front end middle back end

infrastructure — symbol tables, trees, graphs, etc

UW CSE 401 Winter 2017

Big Picture

 Compiler consists of lots of fast stuff followed
by hard problems

— Scanner: O(n)

— Parser: O(n)

— Analysis & Optimization: ~ O(n log n)

— Instruction selection: fast or NP-Complete
— Instruction scheduling: NP-Complete

— Register allocation: NP-Complete

UW CSE 401 Winter 2017 Q-5

IR for Code Generation

e Assume a low-level RISC-like IR

— 3 address, register-register instructions plus load/
store

rl<-r2opr3
— Could be tree structure or linear
— Expose as much detail as possible

* Assume “enough” (i.e., ®) registers
— Invent new temporaries for intermediate results
— Map to actual registers towards the end

UW CSE 401 Winter 2017 Q-6

Overview: Instruction Selection

* Map IR into assembly code

* Assume known storage layout and code shape

— i.e., the optimization phases have already done
their thing

* Combine low-level IR operations into machine
instructions (take advantage of addressing
modes, etc.)

UW CSE 401 Winter 2017 Q-7

Overview: Instruction Scheduling

e Reorder instructions to minimize execution time

— hide latencies — processor function units, memory/
cache stalls

— Originally invented for supercomputers (60s)

— Required to get reasonable (or correct!) code on
classic RISC architectures

— Still important on most machines
* Even non-RISC machines, e.g., x86 family
e Even if processor reorders on the fly
Good schedules help processor do a better job

* Assume fixed program at this point

UW CSE 401 Winter 2017

Q-8

Overview: Register Allocation

* Map values to actual registers
— Previous phases change need for registers

* Add code to spill values to temporaries in
memory and reload as needed, etc.

e Usually worth doing another instruction
scheduling pass afterwards if spill code
inserted

UW CSE 401 Winter 2017

Q-9

Conventional Wisdom

We typically lose little by solving these independently
— But not always; depends on architecture
* |nstruction selection
— Use some form of pattern matching
— oo virtual registers — create as needed
* |nstruction scheduling

— Within a block, list scheduling is close to optimal

— Across blocks: extended basic blocks or trace scheduling if
list scheduling not good enough

Register allocation

— Start with unlimited virtual registers and map to some
subset of K real registers

Instruction Selection

* Map IR into assembly code

* Assume known storage layout and code shape

UW CSE 401 Winter 2017 Q-11

A Simple Low-Level IR (1)

* This example is from Appel, but details aren’t
really important. What matters is to get a feel for
the level of detail involved.

* Expressions:

— CONST(i) —integer constant i
— TEMP(t) — temporary t (i.e., register)
— BINOP(op,el,e2) — application of op to el,e2

— MEM(e) — contents of memory at address e
* Means value when used in an expression
* Means address when used as target of assignment

— CALL(f,args) — apply function f to argument list args

UW CSE 401 Winter 2017 Q-12

Simple Low-Level IR (2)

* Statements
— MOVE(TEMP t, e) — evaluate e and store in temporary t

— MOVE(MEM(el), e2) — evaluate el to yield address a;
evaluate e2 and store at a

— EXP(e) — evaluate expressions e and discard result
— SEQ(s1,s2) — execute sl followed by s2
— NAME(n) —assembly language label n

— JUMP(e) — jump to e, which can be a NAME label, or more
compex (e.g., switch)

— CJUMP(op,el,e2,t,f) — evaluate el op e2; if true jump to
label t, otherwise jump to f

— LABEL(n) — defines location of label n in the code

UW CSE 401 Winter 2017 Q-13

Low-Level IR Example (1)

e Access a local variable at a known offset k
from the frame pointer fp

— Linear
MEM(BINOP(PLUS, TEMP fp, CONST k))
— Tree
MEM
!
N

TEMP fp CONST k

UW CSE 401 Winter 2017 Q-14

Low-Level IR Example (2)

e Access an array element e[k], where each
element takes up w storage locations

UW CSE 401 Winter 2017 Q-15

Instruction Selection Issues

* Given the low-level IR, there are many
possible code sequences that implement it
correctly

— e.g. set %rax to 0 on x86-64 (did we miss some?)

movq S0,%rax salg 64,%rax
subq %rax,%rax shrq 64,%rax
xorq %rax,%rax imulg S0,%rax

— Many machine instructions do several things at
once — e.g., register arithmetic and effective
address calculation, e.g.,

movq offset(%rbase, %rindex, scale), %rdest

UW CSE 401 Winter 2017 Q-16

Instruction Selection Criteria

« Several possibilities
— Fastest
— Smallest

— Minimize power consumption (ex: don’t use a
function unit if leaving it powered-down is a win)

« Sometimes not obvious

— e.g., if one of the function units in the processor is
idle and we can select an instruction that uses that
unit, it effectively executes for free, even if that
instruction wouldn’ t be chosen normally

 (Some interaction with scheduling here...)
 (and it might consume extra power, so bad if that matters)

Tree Pattern Matching

e Goal: find a sequence of machine instructions
that perform the computation described by
the program IR code

— Describe machine instructions using same low-
level IR used for program, then

— Use tree pattern matching to pick instructions that
match fragments of the program IR tree; use a
combination of these to cover the whole IR tree

UW CSE 401 Winter 2017 Q-18

An Example Target Machine (1)

e Arithmetic Instructions
— (unnamed) ri TEMP
— ADDri<-rj+rk +
/\
/\

— MULri<-r1j *rk
— SUB and DIV are similar

— For some examples, we’ll assume there is at least one
register (RO) hardwired to be 0 always

UW CSE 401 Winter 2017 Q-19

An Example Target Machine (2)

e Immediate Instructons
— ADDIri<g-rj+c

By By CONST
////~\\\\ ////A\\\\

CONST ~ CONST
—SUBIri<-rj-c

////A\\\\
CONST

UW CSE 401 Winter 2017 Q-20

An Example Target Machine (3)

* Load
— LOAD ri <- M[rj + c]

MEM MEM MEM MEM
I I I I

By By CONST
////\\\\ ////\\\\

CONST CONST

UW CSE 401 Winter 2017 Q-21

An Example Target Machine (4)

 Store
— STORE M([rj+c] <-ri

MOVE MOVE MOVE MOVE
MEM MEM MEM MEM

I I
CONST

P P

CONST CONST

UW CSE 401 Winter 2017 Q-22

Tree Pattern Matching (1)

* Goal: Tile the low-level IR tree with operation
(instruction) trees

* Atiling is a collection of <node,op> pairs
— node is a node in the tree
— Op IS an operation tree

— <node,op> means that op could implement the
subtree at node

UW CSE 401 Winter 2017 Q-23

Tree Pattern Matching (2)

* Atiling “implements” a tree if it covers every
node in the tree and the overlap between any
two tiles (trees) is limited to a single node
— If <node,op> is in the tiling, then node is also

covered by a leaf of another operation tree in the
tiling — unless it is the root

— Where two operation trees meet, they must be
compatible (i.e., expect the same value in the
same location)

UW CSE 401 Winter 2017 Q-24

Generating Tilings

Two common algorithms

* Maximal munch:

— Top-down tree walk.

— Find largest tile that fits each node
* Dynamic programming:

— Assign costs to each node in the tree
cost = cost of individual node + subtree costs

— Try all possible combinations bottom-up and pick
cheapest

UW CSE 401 Winter 2017 Q-25

Example — Tree for ali]:=x

MOVE
MEM MEM
| |
- /+\
/*
Fp CONST x
MEM N
J'r TEMPi CONST 4

FP CONST a

UW CSE 401 Winter 2017

Q-26

Generating Code

Given a tiled tree, to generate code

* Do a postorder treewalk with node-dependant
order for children

* Each tile corresponds to a code sequence;
emit code sequences in order

* Connect tiles by using same register name to
tie boundaries together

UW CSE 401 Winter 2017 Q-27

Instruction Scheduling

e Reorder instructions to minimize execution
time given instruction and operand latencies

* Assume fixed program at this point

UW CSE 401 Winter 2017 Q-28

Some Scheduling Issues

 Many operations have non-zero latencies

 Modern machines can issue several operations per cycle
— Want to take advantage of multiple function units on chip

* Loads & Stores may or may not block
— may be cycles after load/store start for other useful work

* Branch costs vary

* Modern processors have heuristics to predict whether
branches are taken and try to keep pipelines full

GOAL: Scheduler should reorder instructions to hide latencies,
take advantage of multiple function units and delay slots, and
help the processor effectively pipeline execution

Latencies for a Simple Example Machine

Operation Cycles
LOAD 3
STORE 3
ADD 1
MULT 2
SHIFT 1

BRANCH 0TO 8

UW CSE 401 Winter 2017

0-30

Example: w=w*2*x*y*z;

1 LOAD
4 ADD

5 LOAD
8 MULT
9 LOAD
12 MULT
13 LOAD
16 MULT
18 STORE
21 rl free

2 registers, 20 cycles

Simple schedule

rl1 <-w
rl<-rl,rl
r2 <- X
rl<-rl,r2
r2<-y
rl<-rl,r2
r2<-z
rl<-rl,r2
w<-rl

Loads early

1 LOAD
2 LOAD
LOAD
ADD

MULT
LOAD
MULT
9 MULT
11 STORE

N o 0 bW

14 rlis free
3 registers, 13 cycles

UW CSE 401 Winter 2017

rl1 <-w

r2 <-x
r3<-y
rl<-rl,rl
rl<-rl,r2
r2 <-z
rl1<-rl,r3
rl<-rl,r2
w<-rl

0-31

List Scheduling Algorithm Overview

* Build a precedence graph P of instructions,
labeled with priorities (usually number of
cycles on critical path to the end)

e Use list scheduling to construct a schedule,
one cycle at a time

 Rename registers to avoid false dependencies
and conflicts

UW CSE 401 Winter 2017 0-32

Precedence Graph

* Nodes n are operations

e Attributes of each node
type — kind of operation
delay — latency until end of graph

* |f node n2 uses the result of node n1, there is
an edge e =(n1,n2) from nlton2in the

graph

UW CSE 401 Winter 2017 0-33

List Scheduling

* Construct a schedule, one cycle at a time
— Keep a list of operations that are ready to execute

— At each cycle, chose a ready operation and
schedule it

* Best pick: one that is on the “critical path” —i.e., an
instruction that has longest latency from end of graph

— Update ready list, deleting scheduled op and add
ones that will be ready on next cycle

UW CSE 401 Winter 2017 0-34

Example

* Code

a LOAD
b ADD
c LOAD
d MULT
e LOAD
f MULT
g LOAD
h MULT
i STORE

rl<-w
rl<-rl,rl
r2 <- X
rl<-rl,r2
r2<-y
rl<-rl,r2
r2<-z
rl<-rl,r2

w<-rl

UW CSE 401 Winter 2017

0-35

Forward vs Backwards

* Alternative: backward list scheduling

— Instead of starting at the leaves, work from the root
to the leaves

— Schedules instructions from end to beginning of the
block

* |n practice, compilers try both and pick the result
that minimizes costs

— Little extra expense since the precedence graph and
other information can be reused

— Different directions win in different cases

UW CSE 401 Winter 2017 0-36

Register Allocation by Graph Coloring

 How to convert the infinite sequence of
temporary data references, t1, t2, ... into
assignments to finite number of actual registers

* Goal: Use available registers with minimum
spilling

* Problem: Minimizing the number of registers is
NP-complete ... it is equivalent to chromatic
number — minimum colors needed to color nodes
of a graph so no edge connects same color

Begin With Data Flow Graph

e procedure-wide register allocation
* only live variables require register storage

dataflow analysis: a variable is live at node N if
the value it holds is used on some path further
down the control-flow graph; otherwise it is dead

* two variables(values) interfere when their live
ranges overlap

UW CSE 401 Winter 2017 Q-38

Live Variable Analysis

a := read() ; a := read();
b := read(); b b := read():;
c := read(); c := read();
d := a + b*c: d d := a + b*c;
if (d < 10) then
‘ e := c+8;
d < 10 — print (c) ;
else
e := c+8; = 10; f :=10;
print (c) ; e := f + d; e := f + d;
print (£f) ; print (£f) ;
__— £i
rint(e) 7 | cse a0t winter 2017 print(e); Q-39

Register Interference Graph

a := read();
b := read(); b .
c := read(); o
d := a + b*c; d
| ;
d < 10 —
e := c+8;Jj///;>*<i:;i\i0;
print(c) ; e := f + 4d;
print (£f) ;

/

rint(e) ; | cse a0t winter 2017 Q-40

Graph Coloring

* NP complete problem

* Heuristic: color easy nodes last
— find node N with lowest degree
— remove N from the graph
— color the simplified graph

— set color of N to the first color that is not used by any
of N ’s neighbors

e Basics due to Chaitin (1982), refined by Briggs
(1992)

f

N

UW CSE 401 Winter 2017 Q-41

Apply Heuristic

Il

UW CSE 401 Winter 2017 Q-42

Apply Heuristic

Il

UW CSE 401 Winter 2017 Q-43

Apply Heuristic

UW CSE 401 Winter 2017 Q-44

Apply Heuristic

Shatate

UW CSE 401 Winter 2017 Q-45

Continued

UW CSE 401 Winter 2017 Q-46

Continued

a b a b
d d
f f

UW CSE 401 Winter 2017 Q-47

Continued

UW CSE 401 Winter 2017 Q-48

Continued

UW CSE 401 Winter 2017 Q-49

Continued

UW CSE 401 Winter 2017 Q-50

Continued

a b a b
a l»
f f

UW CSE 401 Winter 2017 Q-51

Continued

Continued

=

UW CSE 401 Winter 2017 Q-53

Continued

=

Final Assignment

:= read() ;
b := read();
c := read():;
d := + b*c;
if (d < 10) then
e := c+8;
print(c) ;
else
f :=10;
e :=f + 4d;
print(f) ;
fi
print(e) ;

UW CSE 401 Winter 2017

Q-55

Some Graph Coloring Issues

 May run out of registers
— Solution: insert spill code and reallocate

e Special-purpose and dedicated registers

— Examples: function return register, function

argument registers, registers required for
particular instructions

— Solution: “pre-color” some nodes to force
allocation to a particular register

UW CSE 401 Winter 2017 Q-56

Exercise

{ int tmp 2ab = 2*a*b;
int tmp aa = a*a;
int tmp bb = b*b;

X := tmp aa + tmp 2ab + tmp bb;
y := tmp aa - tmp 2ab + tmp bb;

given that a and b are live on entry and dead on exit,

and that x and y are live on exit:
(a) construct the register interference graph
(b) color the graph; how many registers are needed?

UW CSE 401 Winter 2017 Q-57

4 Registers Needed

UW CSE 401 Winter 2017 Q-58

Live Ranges

* Real graph-coloring register allocators don’t
allocate registers — they allocate live ranges

* Alive range is a set of definitions and uses that
flow together
— Every definition can reach every use
— Every use that a definition can reach is in the same

live range

* |dea: disjoint uses of a variable in different parts
of the program don’t actually interfere so they
should be in separate live ranges

Coalescing Live Ranges

* |dea: if two live ranges are connected by a
copy operation (MOV ri — rj) but do not
otherwise interfere, then the live ranges can
be coalesced (combined)

— Rewrite all references to rj to use ri
— Remove the copy instruction

* Then need to fix up interference graph

Advantages?

* Makes the code smaller, faster (no copy
operation)

* Shrinks set of live ranges

 Reduces the degree of any live range that
interfered with both live ranges ri, rj

* But: coalescing two live ranges can prevent
coalescing of others, so ordering matters

— Best: Coalesce most frequently executed ranges first
(e.g., inner loops)

* Can have a substantial payoff — do it!

Overall Structure

More Coalescing Possible

Insert
Spills

Find live Build int. | Spil || Find No Spills
ranges graph | Coalesce Costs | | Coloring
Spills

Then you may want to iterate with additional instruction selection

and scheduling passes, particularly on a complex machine where
operations can have both memory or register operands (e.g., x86)

And that’s it!

Modulo all the picky details, that is...

UW CSE 401 Winter 2017 Q-63

