
CSE	401	–	Compilers	

x86-64,	Running	MiniJava,	
Basic	Code	GeneraBon	and	Bootstrapping	

Hal	Perkins	
Winter	2017	

UW CSE 401 Winter 2017 M-1

Running	MiniJava	Programs	

•  To	run	a	MiniJava	program	
– Space	needs	to	be	allocated	for	a	stack	and	a	heap	
– %rsp	and	other	registers	need	to	have	sensible	
iniBal	values	

– We	need	some	way	to	allocate	storage	(new)	and	
communicate	with	the	outside	world	

UW CSE 401 Winter 2017 M-2

Bootstraping	from	C	

•  Idea:	take	advantage	of	the	exisBng	C	runBme	
library		

•  Use	a	small	C	main	program	to	call	the	
MiniJava	main	method	as	if	it	were	a	C	
funcBon	

•  C’s	standard	library	provides	the	execuBon	
environment	and	we	can	call	C	funcBons	from	
compiled	code	for	I/O,	malloc,	etc.	

UW CSE 401 Winter 2017 M-3

Assembler	File	Format	
•  GNU	syntax	is	roughly	this	(sample	code	will	be	
provided	with	codegen	phase	of	the	project)	

.text 	 	 	#	code	segment	

.globl	asm_main	 	#	start	of	compiled	staBc	main	
<generated	code> 	#	repeat	.code/.data	as	needed	

asm_main: 	 	 	#	start	of	compiled	“main”	
	...	
.data	
<generated	method	tables>			
#	repeat	.text/.data	as	needed	
…	
end	

UW CSE 401 Winter 2017 M-4

External	Names	

•  In	a	Linux	environment,	an	external	symbol	is	
used	as-is	(xyzzy)	

•  In	Windows	and	OS	X,	an	external	symbol	xyzzy	is	
wrihen	in	asm	code	as	_xyzzy	(leading	
underscore)	

•  Your	compiler	needs	to	generate	code	that	runs	
on	ahu	using	Linux	convenBons,	but	if	you	want	
to	support	the	other	as	an	opBon,	feel	free	to	
add	a	compiler	switch	or	something	

UW CSE 401 Winter 2017 M-5

GeneraBng	.asm	Code	

•  SuggesBon:	isolate	the	actual	compiler	output	
operaBons	in	a	handful	of	rouBnes	
– Usual	modularity	reasons	&	saves	some	typing	
–  PossibiliBes	

	//	write	code	string	s	to	.asm	output	
	void	gen(String	s)	{	…	}	
	//	write	“op		src,dst”	to	.asm	output	
	void	genbin(String	op,	String	src,	String	dst)	{	…	}	
	//	write	label	L	to	.asm	output	as	“L:”	
	void	genLabel(String	L)	{	…	}	

– A	handful	of	these	methods	should	do	it	

UW CSE 401 Winter 2017 M-6

A	Simple	Code	GeneraBon	Strategy	

•  Goal:	quick	‘n	dirty	correct	code,	opBmize	
later	if	Bme	

•  Traverse	AST	primarily	in	execuBon	order	and	
emit	code	during	the	traversal	
– Visitor	may	traverse	the	tree	in	ad-hoc	ways	
depending	on	sequence	that	parts	need	to	appear	
in	the	code	

•  Treat	the	x86-64	as	a	1-register	machine	with	
a	stack	for	addiBonal	intermediate	values(!)	

UW CSE 401 Winter 2017 M-7

(The?)	Simplifying	AssumpBon	

•  Store	all	values	(reference,	int,	boolean)	in	64-
bit	quadwords	
– Natural	size	for	64-bit	pointers,	i.e.,	object	
references	(variables	of	class	types)	

– C’s	“long”	size	for	integers	
•  Beher	to	use	uint64_t	in	C	code	to	guarantee	size.	Type	
declared	in	<stdint.c>	

UW CSE 401 Winter 2017 M-8

x86	as	a	Stack	Machine	
•  Idea:	Use	x86-64	stack	for	expression	evaluaBon	with	
%rax	as	the	“top”	of	the	stack	

•  Invariant:	Whenever	an	expression	(or	part	of	one)	is	
evaluated	at	runBme,	the	generated	code	leaves	the	
result	in	%rax	

•  If	a	value	needs	to	be	preserved	while	another	
expression	is	evaluated,	push	%rax,	evaluate,	then	pop	
when	first	value	is	needed	
–  Remember:	always	pop	what	you	push	
– Will	produce	lots	of	redundant,	but	correct,	code	

•  Examples	below	follow	code	shape	examples,	but	with	
some	details	about	where	code	generaBon	fits	

UW CSE 401 Winter 2017 M-9

Example:	Generate	Code	for	Constants	
and	IdenBfiers	
Integer	constants,	say	17	

	gen(movq		$17,%rax)	
•  leaves	value	in	%rax	

Local	variables	(any	type	–	int,	bool,	reference)	
	gen(movq		varoffset(%rbp),%rax)	

UW CSE 401 Winter 2017 M-10

Example:	Generate	Code	for	exp1	+	exp1	

Visit	exp1	
–  generate	code	to	evaluate	exp1	with	result	in	%rax	

gen(pushq	%rax)	
–  push	exp1	onto	stack	

Visit	exp2	
–  generate	code	for	exp2;	result	in	%rax	

gen(popq	%rdx)	
–  pop	lew	argument	into	%rdx;	clean	up	stack	

gen(addq		%rdx,%rax)	
–  perform	the	addiBon;	result	in	%rax	

UW CSE 401 Winter 2017 M-11

Example:		var	=	exp;		(1)	

Assuming	that	var	is	a	local	variable	
Visit	node	for	exp	

•  Generates	code	to	calculate	exp	and	put	result	in	%rax	
gen(movq	%rax,offset_of_variable(%rbp))	

UW CSE 401 Winter 2017 M-12

Example:		var	=	exp;		(2)	

If	var	is	a	more	complex	expression	(object	or	
array	reference,	for	example)	

visit	var	
gen(pushq	%rax)	

•  push	lvalue	(address)	of	variable	or	object	containing	
variable	onto	stack	

visit	exp	
•  leaves	rhs	value	in	%rax	

gen(popq	%rdx)	
gen(movq	%rax,appropriate_offset(%rdx))	

UW CSE 401 Winter 2017 M-13

Example:	Generate	Code	for		
obj.f(e1,e2,…en)	
In	principal	the	code	should	work	like	this:	

Visit	obj	
•  leaves	reference	to	object	in	%rax	

gen(movq	%rax,rdi)	
•  “this”	pointer	is	first	argument	

Visit	e1,	e2,	…,	en.		For	each	argument,	
•  gen(movq		%rax,correct_argument_register)	

generate	code	to	load	method	table	pointer	located	at		
0(%rdi)	into	some	register,	probably	%rax		
generate	call	instrucBon	with	indirect	jump	

UW CSE 401 Winter 2017 M-14

Method	Call	ComplicaBons	

•  Big	one:	code	to	evaluate	any	argument	might	
clobber	argument	registers	(i.e.,	method	call	
in	some	parameter	value)	
– Possible	strategy	to	cope	on	next	slides,	but	feel	
free	to	do	something	beher	

•  Other	one:	what	if	a	method	has	too	many	
parameters?	
– OK	for	CSE	401	to	assume	that	all	methods	have	
≤	5	parameters	plus	“this”	–	do	beher	if	you	want	

UW CSE 401 Winter 2017 M-15

Method	Calls	in	Parameters	

•  SuggesBon	to	avoid	trouble:	
– Evaluate	parameters	and	push	them	on	the	stack	
– Right	before	the	call	instrucBon,	pop	the	
parameters	into	the	correct	registers	

•  But….	

UW CSE 401 Winter 2017 M-16

Stack	Alignment	(1)	

•  Above	idea	hack	works	provided	we	don’t	call	a	
method	while	an	odd	number	of	parameter	
values	are	pushed	on	the	stack!		
–  (violates	16-byte	alignment	on	method	call…)	

•  We	have	a	similar	problem	if	an	odd	number	of	
intermediate	values	are	pushed	on	the	stack	
when	we	call	a	funcBon	in	the	middle	of	
evaluaBng	an	expression	

•  (But	we	may	get	away	with	it	if	it	only	involves	
calls	to	our	generated,	not	library,	code)	

UW CSE 401 Winter 2017 M-17

Stack	Alignment	(2)	

•  Workable	soluBon:	keep	a	counter	in	the	code	
generator	of	how	much	has	been	pushed	on	the	
stack.		If	needed,	gen(pushq	%rax)	to	align	the	
stack	before	generaBng	a	call	instrucBon	
–  Be	sure	to	pop	it	awer!!	

•  Another	soluBon:	make	stack	frame	big	enough	
and	use	movq	instead	of	pushq	to	store	
arguments	and	temporaries	
– Will	need	some	extra	bookkeeping	to	keep	track	of	
how	much	to	allocate	and	how	temps	are	used	

UW CSE 401 Winter 2017 M-18

Sigh…	

•  MulBple	registers	for	method	arguments	is	a	
big	win	compared	to	pushing	on	the	stack,	but	
complicates	our	life	since	we	do	not	have	a	
fancy	register	allocator	

•  Feel	free	to	do	beher	than	this	simple	push/
pop	scheme	–	but	remember,	simple	and	
works	wins	over	fancy	and	broken	

UW CSE 401 Winter 2017 M-19

Code	Gen	for	Method	DefiniBons	

•  Generate	label	for	method	
Classname$methodname:	

•  Generate	method	prologue	
Push	rbp,	copy	rsp	to	rbp,	subtract	frame	size	from	rsp	

•  Visit	statements	in	order	
– Method	epilogue	is	normally	generated	as	part	of	
a	return	statement	(next)	

–  In	MiniJava	the	return	is	generated	awer	visiBng	
the	method	body	to	generate	its	code	

UW CSE 401 Winter 2017 M-20

Registers	again…	

•  Method	parameters	are	in	registers	
•  But	code	generated	for	methods	also	will	be	
using	registers,	even	if	there	are	no	calls	to	other	
methods	

•  So	how	do	we	avoid	clobbering	parameters?	
•  SuggesBon:	Allocate	space	in	the	stack	frame	and	
save	copies	of	all	parameter	registers	on	method	
entry.		Use	those	copies	as	local	variables	when	
you	need	to	reference	a	parameter.	

UW CSE 401 Winter 2017 M-21

Example:	return	exp;	

•  Visit	exp;		this	leaves	result	in	%rax	where	it	
needs	to	be	

•  Generate	method	epilogue	to	unwind	the	
stack	frame;	end	with	ret	instrucBon	

UW CSE 401 Winter 2017 M-22

Control	Flow:	Unique	Labels	

•  Needed:	a	String-valued	method	that	returns	
a	different	label	each	Bme	it	is	called	(e.g.,	L1,	
L2,	L3,	…)	
–  Improvement:	a	set	of	methods	that	generate	
different	kinds	of	labels	for	different	constructs	
(can	really	help	readability	of	the	generated	code)	
•  (while1,	while2,	while3,	…;	if1,	if2,	…;	else1,	else2,	…;	
fi1,	fi2,	…	.)	

UW CSE 401 Winter 2017 M-23

Control	Flow:	Tests	

•  Recall	that	the	context	for	compiling	a	
boolean	expression	is	
– Label	or	address	of	jump	target	
– Whether	to	jump	if	true	or	false	

•  So	the	visitor	for	a	boolean	expression	should	
receive	this	informaBon	from	the	parent	node	

UW CSE 401 Winter 2017 M-24

Example:	while(exp)	body	

•  Assuming	we	want	the	test	at	the	bohom	of	
the	generated	loop…	
gen(jmp	testLabel)	
gen(bodyLabel:)	
visit	body	
gen(testLabel:)	
visit	exp	(condiBon)	with	target=bodyLabel	and	
sense=“jump	if	true”	

UW CSE 401 Winter 2017 M-25

Example:		exp1	<	exp2	
•  Similar	to	other	binary	operators	
•  Difference:	context	is	a	target	label	and	whether	
to	jump	if	true	or	false	

•  Code	
visit	exp1	
gen(pushq	%rax)	
visit	exp2	
gen(popq	%rdx)	
gen(cmpq	%rdx,%rax)	
gen(condjump	targetLabel)	

•  appropriate	condiBonal	jump	depending	on	sense	of	test	

UW CSE 401 Winter 2017 M-26

Boolean	Operators	

&&	(and	||	if	you	add	it)	
– Create	label	needed	to	skip	around	the	two	parts	
of	the	expression	

– Generate	subexpressions	with	appropriate	target	
labels	and	condiBons	

!exp	
– Generate	exp	with	same	target	label,	but	reverse	
the	sense	of	the	condiBon	

UW CSE 401 Winter 2017 M-27

Reality	check	

•  Lots	of	projects	in	the	past	have	evaluated	all	
booleans	to	get	1	or	0,	then	tested	that	value	
for	control	flow	

•  Would	be	nice	to	do	beher	(as	above),	but	
“simple	and	works”…	

UW CSE 401 Winter 2017 M-28

Join	Points	
•  Loops	and	condiBonal	statements	have	join	points	where	

execuBon	paths	merge	
•  Generated	code	must	ensure	that	machine	state	will	be	

consistent	regardless	of	which	path	is	taken	to	get	there	
–  i.e.,	the	paths	through	an	if-else	statement	must	not	leave	a	
different	number	of	words	pushed	onto	the	stack	

–  If	we	want	a	parBcular	value	in	a	parBcular	register	at	a	join	
point,	both	paths	must	put	it	there,	or	we	need	to	generate	
addiBonal	code	to	move	the	value	to	the	correct	register	

•  With	a	simple	1-accumulator	model	of	code	generaBon,	
this	should	usually	be	true	without	needing	extra	work;	
with	beher	use	of	registers	it	becomes	a	bigger	issue	

UW CSE 401 Winter 2017 M-29

Bootstrap	Program	

•  The	bootstrap	is	a	Bny	C	program	that	calls	
your	compiled	code	as	if	it	were	an	ordinary	C	
funcBon	

•  It	also	contains	some	funcBons	that	compiled	
code	can	call	as	needed	
– Mini	“runBme	library”	
– Add	to	this	if	you	like	

•  SomeBmes	simpler	to	generate	a	call	to	a	newly	wrihen	
library	rouBne	instead	of	generaBng	in-line	code	–	
implementer	tradeoff		

UW CSE 401 Winter 2017 M-30

Bootstrap	Program	Sketch	

#include	<stdio.h>	
extern	void	asm_main();		/*	compiled	code	*/	
/*	execute	compiled	program	*/	
void	main()	{	asm_main();	}	
/*	write	x	to	standard	output	*/	
void	put(int64_t	x)	{	…	}	
/*	return	a	pointer	to	a	block	of	memory	at	least	nBytes	
large	(or	null	if	insufficient	memory	available)	*/	

char*	allocmem(size_t	nBytes)	{	return	malloc(nBytes);	}	

UW CSE 401 Winter 2017 M-31

Main	Program	Label	

•  Compiler	needs	special	handling	for	the	staBc	
main	method	label	
– Label	must	be	the	same	as	the	one	declared	
extern	in	the	C	bootstrap	program	and	
declared	.globl	in	the	.s	asm	file	

– asm_main	used	above	
•  Could	be	changed,	but	probably	no	point	
• Why	not	“main”?		(Hint:	where	is	the	real	main?)	

UW CSE 401 Winter 2017 M-32

Interfacing	to	“Library”	code	

•  Trivial	to	call	“library”	funcBons	
•  Evaluate	parameters	using	the	regular	calling	
convenBons	

•  Generate	a	call	instrucBon	using	the	funcBon	
label	
–  (External	names	need	leading	_	in	Windows,	OS	X)	
– Linker	will	hook	everything	up	

UW CSE 401 Winter 2017 M-33

System.out.println(exp)	

MiniJava’s	“print”	statement	
<compile	exp;	result	in	%rax>	
movq	 	%rax,%rdi 	#	load	argument	register	
call 	 	put 	 	 	#	call	external	put	rouBne	

•  If	the	stack	is	not	kept	16-byte	aligned,	calls	to	
external	C	or	library	code	can	cause	a	runBme	
error	(will	cause	on	OS	X)	

UW CSE 401 Winter 2017 M-34

And	That’s	It…		

•  We’ve	now	got	enough	on	the	table	to	
complete	the	compiler	code	generator	
–  (Once	we	finish	the	lectures	on	objects,	vtables,	
and	method	calls	–	which	we	did	yesterdayJ)		

•  Coming	AhracBons	
– Lower-level	IR	and	control-flow	graphs	
– Back	end	(instrucBon	selecBon	and	scheduling,	
register	allocaBon)	

– Middle	(opBmizaBons)	

UW CSE 401 Winter 2017 M-35

