
CSE	401	–	Compilers	

Code	Shape	II	–	Objects	&	Classes	
Hal	Perkins	
Winter	2017	

UW CSE 401 Winter 2017 L-1

Administrivia	
•  Codegen	assignment	out	end	of	the	week	
–  Due	a	week	from	Tuesday	
–  Assignment	suggests	a	plausible	sequence	for	doing	things	
a	liLle	bit	at	a	Mme	(recommended)	
•  Remember	to	test	as	you	go	

•  How’s	semanMcs/type	checking?	

•  New	office	hour:	Perkins,	Wed	4-5,	CSE	548	

•  Handout	today:	figure	out	what	that	program	prints!!	

UW CSE 401 Winter 2017 L-2

Agenda	
•  Object	representaMon	and	layout	
•  Field	access	
•  What	is	this?	
•  Object	creaMon	-	new
•  Method	calls	
–  Dynamic	dispatch	
– Method	tables	
–  Super	

•  RunMme	type	informaMon	
	
(As	before,	more	generality	than	we	actually	need	for	the	project)	

UW CSE 401 Winter 2017 L-3

What	does	this	program	print?	
class	One	{	
			int	tag;		
			int	it;	
			void	setTag()				 	{	tag	=	1;	}	
			int	getTag()							 	{	return	tag;	}	
			void	setIt(int	it)	 	{	this.it	=	it;	}	
			int	getIt()										 	{	return	it;	}	
}	
	
class	Two	extends	One	{	
			int	it;	
			void	setTag()	{	
						tag	=	2;		it	=	3;	
			}	
			int	getThat()	 	{	return	it;	}	
			void	resetIt()	 	{	super.setIt(42);	}	
}	
	

public	staMc	void	main(String[]	args)	{	
								Two	two	=	new	Two();	
								One	one	=	two;	
									
								one.setTag();	
								System.out.println(one.getTag());	
		
								one.setIt(17);	
								two.setTag();	
								System.out.println(two.getIt());	
								System.out.println(two.getThat());	
								two.resetIt();	
								System.out.println(two.getIt());	
								System.out.println(two.getThat());	
	
				}	

UW CSE 401 Winter 2017 L-4

Your	Answer	Here	

UW CSE 401 Winter 2017 L-5

Object	RepresentaMon	
•  The	naïve	explanaMon	is	that	an	object	contains	
–  Fields	declared	in	its	class	and	in	all	superclasses	

•  RedeclaraMon	of	a	field	hides	(shadows)	superclass	instance	
–	but	the	superclass	field	is	sMll	there		

– Methods	declared	in	its	class	and	all	superclasses	
•  RedeclaraMon	of	a	method	overrides	(replaces)	–	but	
overridden	methods	can	sMll	be	accessed	by	super…	

•  When	a	method	is	called,	the	method	“inside”	
that	parMcular	object	is	called	

–  (But	we	really	don’t	want	to	copy	all	those	methods,	do	we?)	

UW CSE 401 Winter 2017 L-6

Actual	representaMon	

•  Each	object	contains:	
– An	entry	for	each	field	(instance	variable)	
– A	pointer	to	a	runMme	data	structure	for	its	class	
•  Key	component:	method	dispatch	table	(next	slide)	

•  An	object	is	basically	a	C	struct		
•  Fields	hidden	by	declaraMons	in	extended	
classes	are	sMll	allocated	in	the	object	and	are	
accessible	from	superclass	methods	

UW CSE 401 Winter 2017 L-7

Method	Dispatch	Tables	

•  One	of	these	per	class,	not	per	object	
•  Ooen	called	“vtable”,	“vtbl”,	or	“vtab”	
–  (virtual	funcMon	table	–	term	from	C++)	

•  One	pointer	per	method	–	points	to	beginning	
of	method	code	

•  Dispatch	table	offsets	fixed	at	compile	Mme	

UW CSE 401 Winter 2017 L-8

Method	Tables	and	Inheritance	
•  An	iniMal,	really	simple	implementaMon	
– Method	table	for	each	class	has	pointers	to	all	
methods	declared	in	it	

– Method	table	also	contains	a	pointer	to	parent	class	
method	table	

– Method	dispatch	
•  Look	in	current	table	and	use	if	method	declared	locally	
•  Look	in	parent	class	table	if	not	local	
•  Repeat	
•  “Message	not	understood”	if	you	can’t	find	it	aoer	search	

– Actually	used	in	typical	implementaMons	of	some	
dynamic	languages	(e.g.	SmallTalk,	Ruby,	etc.)	

UW CSE 401 Winter 2017 L-9

O(1)	Method	Dispatch	
•  Idea:	First	part	of	method	table	for	extended	
class	has	pointers	for	the	same	methods	in	the	
same	order	as	the	parent	class	
–  BUT		pointers	actually	refer	to	overriding	methods	if	
these	exist	

∴	Method	dispatch	can	be	done	with	indirect	jump	
using	fixed	offsets	known	at	compile	Mme	–	O(1)	

•  In	C:	*(object->vtbl[offset])(parameters)	

•  Pointers	to	addiMonal	methods	defined	in	
extended	class	are	included	in	the	table	following	
inherited/overridden	ones	

UW CSE 401 Winter 2017 L-10

Method	Dispatch	Footnotes	

•  Don’t	need	a	pointer	to	parent	class	method	
table	for	method	calls,	but	sMll	want	it	for	
other	purposes	
– Casts	and	instanceof	

•  MulMple	inheritance	requires	more	complex	
mechanisms	
– Also	true	for	mulMple	interfaces	

UW CSE 401 Winter 2017 L-11

Perverse	Example	Revisited	
class	One	{	
			int	tag;		
			int	it;	
			void	setTag()				{	tag	=	1;	}	
			int	getTag()						{	return	tag;	}	
			void	setIt(int	it)	{this.it	=	it;}	
			int	getIt()									{	return	it;	}	
}	
class	Two	extends	One	{	
			int	it;	
			void	setTag()	{	
						tag	=	2;		it	=	3;	
			}	
			int	getThat()	{	return	it;	}	
			void	resetIt()	{	super.setIt(42);	}	
}	
	

public	staMc	void	main(String[]	args)	{	
								Two	two	=	new	Two();	
								One	one	=	two;	
									
								one.setTag();	
								System.out.println(one.getTag());	
		
								one.setIt(17);	
								two.setTag();	
								System.out.println(two.getIt());	
								System.out.println(two.getThat());	
								two.resetIt();	
								System.out.println(two.getIt());	
								System.out.println(two.getThat());	
	
				}	

L-12

ImplementaMon	

UW CSE 401 Winter 2017 L-13

Now	What?	

•  Need	to	explore	
– Object	layout	in	memory	
– Compiling	field	references	

•  Implicit	and	explicit	use	of	“this”	

– RepresentaMon	of	vtables	
– Object	creaMon	–	new		
– Code	for	dynamic	dispatch	
– RunMme	type	informaMon	–	instanceof	and	casts	

UW CSE 401 Winter 2017 L-14

Object	Layout	

•  Typically,	allocate	fields	sequenMally	
•  Follow	processor/OS	alignment	convenMons	
for	struct/object	when	appropriate/available	

•  Use	first	word	of	object	for	pointer	to	method	
table/class	informaMon	

•  Objects	are	allocated	on	the	heap	
– No	actual	bits	in	the	generated	code	

UW CSE 401 Winter 2017 L-15

Object	Field	Access	

•  Source	
	int	n	=	obj.fld;	

•  x86-64	
– Assuming	that	obj	is	a	local	variable	in	the	current	
method’s	stack	frame	

	movq	offsetobj(%rbp),%rax	 	#	load	obj	ptr	
	movq	offsetfld(%rax),%rax 	 	#	load	fld	
	movq	%rax,offsetn(%rbp) 	 	#	store	n	(assignment	stmt)	

–  Same	idea	used	to	reference	fields	of	“this”	
•  Use	implicit	“this”	parameter	passed	to	methods	instead	of	
a	local	variable	to	get	object	address	

UW CSE 401 Winter 2017 L-16

Local	Fields	

•  A	method	can	refer	to	fields	in	the	receiving	
object	either	explicitly	as	“this.f”	or	implicitly	
as	“f”	
– Both	compile	to	the	same	code	–	an	implicit	
“this.”	is	assumed	if	not	present	explicitly	

– A	pointer	to	the	object	(i.e.,	“this”)	is	an	implicit,	
hidden	parameter	to	all	methods	

UW CSE 401 Winter 2017 L-17

Source	Level	View	

What	you	write:	
int	getIt()	{	
		return	it;	
}	
void	setIt(int	it)	{	
		this.it	=	it;	
}	
…	
obj.setIt(42);	
k	=	obj.getIt();	

What	you	really	get:	
int	getIt(Objtype	this)	{	
		return	this.it;	
}	
void	setIt(ObjType	this,	int	it)	{	
		this.it	=	it;	
}	
…	
setIt(obj,	42);		
k	=	getIt(obj);	

UW CSE 401 Winter 2017 L-18

x86-64	“this”	ConvenMon	(C++)	

•  “this”	is	an	implicit	first	parameter	to	every	
non-staMc	method	

•  Address	of	object	(“this”)	placed	in	%rdi	for	
every	non-staMc	method	call	

•  Remaining	parameters	(if	any)	in	%rsi,	etc.	

•  We’ll	use	this	convenMon	in	our	project	

UW CSE 401 Winter 2017 L-19

MiniJava	Method	Tables	(vtbls)	

•  Generate	these	as	iniMalized	data	in	the	assembly	
language	source	program	

•  Need	to	pick	a	naming	convenMon	for	assembly	
language	labels;	suggest:	
–  For	methods,	classname$methodname	

•  Would	need	something	more	sophisMcated	for	overloading	
–  For	the	vtables	themselves,	classname$$	

•  First	method	table	entry	points	to	superclass	
table	(we	might	not	use	this	in	our	project,	but	is	
helpful	if	you	add	instanceof	or	type	cast	checks)	

UW CSE 401 Winter 2017 L-20

Method	Tables	For	Perverse	Example	
(gcc/as	syntax)	

class	One	{	
			void	setTag()				{	…	}	
			int	getTag()						{	…	}	
			void	setIt(int	it)	{…}	
			int	getIt()									{	…	}	
}	
	
class	Two	extends	One	{				
			void	setTag()	{	…	}	
			int	getThat()	{	…	}	
			void	resetIt()	{	…	}	
}	

			 	 	 	.data	
One$$: 	.quad		0									 	#	no	superclass	

	 	 	.quad		One$setTag	
	 	 	.quad		One$getTag	
	 	 	.quad		One$setIt	

		 	 	 	.quad		One$getIt	
Two$$: 	.quad		One$$					#	superclass	

	 	 	.quad		Two$setTag	
	 	 	 	.quad		One$getTag	

	 	 	.quad		One$setIt	
	 	 	.quad		One$getIt	
	 	 	.quad		Two$getThat	
	 	 	.quad		Two$resetIt	

UW CSE 401 Winter 2017 L-21

Method	Table	Layout	

Key	point:	First	entries	in	Two’s	method	table	
are	pointers	to	methods	in	exactly	the	same	
order	as	in	One’s	method	table	
– Actual	pointers	reference	code	appropriate	for	
objects	of	each	class	(inherited	or	overridden)	

∴	Compiler	knows	correct	offset	for	a	parMcular	
method	pointer	regardless	of	whether	that	
method	is	overridden	and	regardless	of	the	
actual	(dynamic)	type	of	the	object	

UW CSE 401 Winter 2017 L-22

Object	CreaMon	–	new	

Steps	needed	
–  Call	storage	manager	(malloc	or	similar)	to	get	the	raw	
bits	

–  IniMalize	bytes	to	0	(Java	semanMcs,	not	in	e.g.,	C++)	
–  Store	pointer	to	method	table	in	the	first	8	bytes	of	
the	object	

–  Call	a	constructor	with	“this”	pointer	to	the	new	
object	in	%rdi	and	other	parameters	as	needed	
•  (Not	in	MiniJava	since	we	don’t	have	constructors)	

–  Result	of	new	is	a	pointer	to	the	new	object		

UW CSE 401 Winter 2017 L-23

Object	CreaMon	
•  Source	

	One	one	=	new	One(…);	
•  x86-64	

movq 	$nBytesNeeded,%rdi 	 	#	obj	size	+	8	(include	space	for	vtbl	ptr)	
call 				 	mallocEquiv 	 	 	 	#	addr	of	allocated	bytes	returned	in	%rax	
<zero	allocated	object,	or	use	calloc	instead	of	malloc	to	get	bytes>	
leaq			 	One$$,%rdx 	 	 	 	#	get	method	table	address	
movq 	%rdx,0(%rax) 	 	 	 	#	store	vtbl	ptr	at	beginning	of	object	
movq 	%rax,%rdi 	 	 	 	#	set	up	“this”	for	constructor	
movq 	%rax,offsettemp(%rbp) 	 	#	save	“this”	for	later	(or	maybe	pushq)	
<load	constructor	arguments> 	 	#	arguments	(if	needed)	
call					 	One$One	 	 	 	 	#	call	ctr	if	we	have	one	(no	vtbl	lookup)	
movq 	offsettemp(%rbp),%rax	 	 	#	recover	ptr	to	object	
movq			 	%rax,offsetone(%rbp) 	 	#	store	object	reference	in	variable	one	

	

UW CSE 401 Winter 2017 L-24

Constructor	

•  Why	don’t	we	need	a	vtable	lookup	to	find	the	
right	constructor	to	call?	

•  Because	at	compile	Mme	we	know	the	actual	
class	(it	says	so	right	aoer	“new”),	so	we	can	
generate	a	call	instrucMon	to	a	known	label	
–  Same	issues	in	super.method(…)	calls	–	at	compile	
Mme	we	know	all	of	the	superclasses	(need	this	to	
construct	the	method	tables),	so	we	know	staMcally	
what	class	“super.method”	belongs	to	

UW CSE 401 Winter 2017 L-25

Method	Calls	

•  Steps	needed	
– Parameter	passing:	just	like	an	ordinary	C	
funcMon,	except	load	a	pointer	to	the	object	in	
%rdi	as	the	first	(“this”)	argument	

– Get	a	pointer	to	the	object’s	method	table	from	
the	first	8	bytes	of	the	object	

–  Jump	indirectly	through	the	method	table	

UW CSE 401 Winter 2017 L-26

Method	Call	
•  Source	

	obj.meth(…);	
•  x86-64	

<load	arguments	in	registers	as	usual>		#	as	needed	
movq 	offsetobj(%rbp),%rdi 	#	first	argument	is	obj	ptr	(“this”)	
movq 	0(%rdi),%rax	 	 	#	load	vtable	address	into	%rax	
call 	 	*offsetmethod(%rax) 	#	call	funcMon	whose	address	is	at 		
	 	 	 	 	 	 	 	#			the	specified	offset	in	the	vtable	*	

	
•  Can	get	same	effect	with:			addq	$offsetmethod,%rax	

	 	 	 	 	 	 	 	call	*(%rax)		
	 	 	 	 	or	with: 	movq	$offsetmethod(%rax),%rax	
	 	 	 	 	 	 	 	call	*%rax	

UW CSE 401 Winter 2017 L-27

RunMme	Type	Checking	
•  We	can	use	the	method	table	for	the	class	as	a	“runMme	

representaMon”	of	the	class 		
–  Each	class	has	one	vtable	at	a	unique	address	

•  The	test	for	“o	instanceof	C”	is	
–  Is	o’s	method	table	pointer	==	&C$$?	

•  If	so,	result	is	“true”	
–  Recursively,	get	pointer	to	superclass	method	table	from	the	
method	table	and	check	that	

–  Stop	when	you	reach	Object	(or	a	null	pointer,	depending	on	
whether	there	is	a	ulMmate	superclass	of	everything)	
•  If	no	match	by	the	top	of	the	chain,	result	is	“false”	

•  Same	test	as	part	of	check	for	legal	downcast	(e.g.,	how	to	
check	for	ClassCastExcepMon	on	(type)obj	cast)	

UW CSE 401 Winter 2017 L-28

Coming	(&	past)	ALracMons	

•  Simple	code	generaMon	for	the	project	(secMons	
tomorrow,	maybe	wrap	up	on	Friday)	

Then	more	compiler	topics:	
•  Other	IRs	besides	ASTs	
•  Industrial-strength	register	allocaMon,	instrucMon	
selecMon,	and	scheduling	

•  Survey	of	code	opMmizaMon	
•  Dynamic	languages?		JVM?		What	else?	

UW CSE 401 Winter 2017 L-29

