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Administrivia	
•  Codegen	assignment	out	end	of	the	week	
–  Due	a	week	from	Tuesday	
–  Assignment	suggests	a	plausible	sequence	for	doing	things	
a	liLle	bit	at	a	Mme	(recommended)	
•  Remember	to	test	as	you	go	

•  How’s	semanMcs/type	checking?	

•  New	office	hour:	Perkins,	Wed	4-5,	CSE	548	

•  Handout	today:	figure	out	what	that	program	prints!!	
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Agenda	
•  Object	representaMon	and	layout	
•  Field	access	
•  What	is	this?	
•  Object	creaMon	-	new 
•  Method	calls	
–  Dynamic	dispatch	
– Method	tables	
–  Super	

•  RunMme	type	informaMon	
	
(As	before,	more	generality	than	we	actually	need	for	the	project)	
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What	does	this	program	print?	
class	One	{	
			int	tag;		
			int	it;	
			void	setTag()				 	{	tag	=	1;	}	
			int	getTag()							 	{	return	tag;	}	
			void	setIt(int	it)	 	{	this.it	=	it;	}	
			int	getIt()										 	{	return	it;	}	
}	
	
class	Two	extends	One	{	
			int	it;	
			void	setTag()	{	
						tag	=	2;		it	=	3;	
			}	
			int	getThat()	 	{	return	it;	}	
			void	resetIt()	 	{	super.setIt(42);	}	
}	
	

public	staMc	void	main(String[]	args)	{	
								Two	two	=	new	Two();	
								One	one	=	two;	
									
								one.setTag();	
								System.out.println(one.getTag());	
		
								one.setIt(17);	
								two.setTag();	
								System.out.println(two.getIt());	
								System.out.println(two.getThat());	
								two.resetIt();	
								System.out.println(two.getIt());	
								System.out.println(two.getThat());	
	
				}	
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Your	Answer	Here	
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Object	RepresentaMon	
•  The	naïve	explanaMon	is	that	an	object	contains	
–  Fields	declared	in	its	class	and	in	all	superclasses	

•  RedeclaraMon	of	a	field	hides	(shadows)	superclass	instance	
–	but	the	superclass	field	is	sMll	there		

– Methods	declared	in	its	class	and	all	superclasses	
•  RedeclaraMon	of	a	method	overrides	(replaces)	–	but	
overridden	methods	can	sMll	be	accessed	by	super…	

•  When	a	method	is	called,	the	method	“inside”	
that	parMcular	object	is	called	

–  (But	we	really	don’t	want	to	copy	all	those	methods,	do	we?)	
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Actual	representaMon	

•  Each	object	contains:	
– An	entry	for	each	field	(instance	variable)	
– A	pointer	to	a	runMme	data	structure	for	its	class	
•  Key	component:	method	dispatch	table	(next	slide)	

•  An	object	is	basically	a	C	struct		
•  Fields	hidden	by	declaraMons	in	extended	
classes	are	sMll	allocated	in	the	object	and	are	
accessible	from	superclass	methods	
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Method	Dispatch	Tables	

•  One	of	these	per	class,	not	per	object	
•  Ooen	called	“vtable”,	“vtbl”,	or	“vtab”	
–  (virtual	funcMon	table	–	term	from	C++)	

•  One	pointer	per	method	–	points	to	beginning	
of	method	code	

•  Dispatch	table	offsets	fixed	at	compile	Mme	
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Method	Tables	and	Inheritance	
•  An	iniMal,	really	simple	implementaMon	
– Method	table	for	each	class	has	pointers	to	all	
methods	declared	in	it	

– Method	table	also	contains	a	pointer	to	parent	class	
method	table	

– Method	dispatch	
•  Look	in	current	table	and	use	if	method	declared	locally	
•  Look	in	parent	class	table	if	not	local	
•  Repeat	
•  “Message	not	understood”	if	you	can’t	find	it	aoer	search	

– Actually	used	in	typical	implementaMons	of	some	
dynamic	languages	(e.g.	SmallTalk,	Ruby,	etc.)	
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O(1)	Method	Dispatch	
•  Idea:	First	part	of	method	table	for	extended	
class	has	pointers	for	the	same	methods	in	the	
same	order	as	the	parent	class	
–  BUT		pointers	actually	refer	to	overriding	methods	if	
these	exist	

∴	Method	dispatch	can	be	done	with	indirect	jump	
using	fixed	offsets	known	at	compile	Mme	–	O(1)	

•  In	C:	*(object->vtbl[offset])(parameters)	

•  Pointers	to	addiMonal	methods	defined	in	
extended	class	are	included	in	the	table	following	
inherited/overridden	ones	
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Method	Dispatch	Footnotes	

•  Don’t	need	a	pointer	to	parent	class	method	
table	for	method	calls,	but	sMll	want	it	for	
other	purposes	
– Casts	and	instanceof	

•  MulMple	inheritance	requires	more	complex	
mechanisms	
– Also	true	for	mulMple	interfaces	
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Perverse	Example	Revisited	
class	One	{	
			int	tag;		
			int	it;	
			void	setTag()				{	tag	=	1;	}	
			int	getTag()						{	return	tag;	}	
			void	setIt(int	it)	{this.it	=	it;}	
			int	getIt()									{	return	it;	}	
}	
class	Two	extends	One	{	
			int	it;	
			void	setTag()	{	
						tag	=	2;		it	=	3;	
			}	
			int	getThat()	{	return	it;	}	
			void	resetIt()	{	super.setIt(42);	}	
}	
	

public	staMc	void	main(String[]	args)	{	
								Two	two	=	new	Two();	
								One	one	=	two;	
									
								one.setTag();	
								System.out.println(one.getTag());	
		
								one.setIt(17);	
								two.setTag();	
								System.out.println(two.getIt());	
								System.out.println(two.getThat());	
								two.resetIt();	
								System.out.println(two.getIt());	
								System.out.println(two.getThat());	
	
				}	
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ImplementaMon	
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Now	What?	

•  Need	to	explore	
– Object	layout	in	memory	
– Compiling	field	references	

•  Implicit	and	explicit	use	of	“this”	

– RepresentaMon	of	vtables	
– Object	creaMon	–	new		
– Code	for	dynamic	dispatch	
– RunMme	type	informaMon	–	instanceof	and	casts	
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Object	Layout	

•  Typically,	allocate	fields	sequenMally	
•  Follow	processor/OS	alignment	convenMons	
for	struct/object	when	appropriate/available	

•  Use	first	word	of	object	for	pointer	to	method	
table/class	informaMon	

•  Objects	are	allocated	on	the	heap	
– No	actual	bits	in	the	generated	code	
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Object	Field	Access	

•  Source	
	int	n	=	obj.fld;	

•  x86-64	
– Assuming	that	obj	is	a	local	variable	in	the	current	
method’s	stack	frame	

	movq	offsetobj(%rbp),%rax	 	#	load	obj	ptr	
	movq	offsetfld(%rax),%rax 	 	#	load	fld	
	movq	%rax,offsetn(%rbp) 	 	#	store	n	(assignment	stmt)	

–  Same	idea	used	to	reference	fields	of	“this”	
•  Use	implicit	“this”	parameter	passed	to	methods	instead	of	
a	local	variable	to	get	object	address	
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Local	Fields	

•  A	method	can	refer	to	fields	in	the	receiving	
object	either	explicitly	as	“this.f”	or	implicitly	
as	“f”	
– Both	compile	to	the	same	code	–	an	implicit	
“this.”	is	assumed	if	not	present	explicitly	

– A	pointer	to	the	object	(i.e.,	“this”)	is	an	implicit,	
hidden	parameter	to	all	methods	
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Source	Level	View	

What	you	write:	
int	getIt()	{	
		return	it;	
}	
void	setIt(int	it)	{	
		this.it	=	it;	
}	
…	
obj.setIt(42);	
k	=	obj.getIt();	

What	you	really	get:	
int	getIt(Objtype	this)	{	
		return	this.it;	
}	
void	setIt(ObjType	this,	int	it)	{	
		this.it	=	it;	
}	
…	
setIt(obj,	42);		
k	=	getIt(obj);	
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x86-64	“this”	ConvenMon	(C++)	

•  “this”	is	an	implicit	first	parameter	to	every	
non-staMc	method	

•  Address	of	object	(“this”)	placed	in	%rdi	for	
every	non-staMc	method	call	

•  Remaining	parameters	(if	any)	in	%rsi,	etc.	

•  We’ll	use	this	convenMon	in	our	project	
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MiniJava	Method	Tables	(vtbls)	

•  Generate	these	as	iniMalized	data	in	the	assembly	
language	source	program	

•  Need	to	pick	a	naming	convenMon	for	assembly	
language	labels;	suggest:	
–  For	methods,	classname$methodname	

•  Would	need	something	more	sophisMcated	for	overloading	
–  For	the	vtables	themselves,	classname$$	

•  First	method	table	entry	points	to	superclass	
table	(we	might	not	use	this	in	our	project,	but	is	
helpful	if	you	add	instanceof	or	type	cast	checks)	
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Method	Tables	For	Perverse	Example	
(gcc/as	syntax)	

class	One	{	
			void	setTag()				{	…	}	
			int	getTag()						{	…	}	
			void	setIt(int	it)	{…}	
			int	getIt()									{	…	}	
}	
	
class	Two	extends	One	{				
			void	setTag()	{	…	}	
			int	getThat()	{	…	}	
			void	resetIt()	{	…	}	
}	

			 	 	 	.data	
One$$: 	.quad		0									 	#	no	superclass	

	 	 	.quad		One$setTag	
	 	 	.quad		One$getTag	
	 	 	.quad		One$setIt	

		 	 	 	.quad		One$getIt	
Two$$: 	.quad		One$$					#	superclass	

	 	 	.quad		Two$setTag	
	 	 	 	.quad		One$getTag	

	 	 	.quad		One$setIt	
	 	 	.quad		One$getIt	
	 	 	.quad		Two$getThat	
	 	 	.quad		Two$resetIt	
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Method	Table	Layout	

Key	point:	First	entries	in	Two’s	method	table	
are	pointers	to	methods	in	exactly	the	same	
order	as	in	One’s	method	table	
– Actual	pointers	reference	code	appropriate	for	
objects	of	each	class	(inherited	or	overridden)	

∴	Compiler	knows	correct	offset	for	a	parMcular	
method	pointer	regardless	of	whether	that	
method	is	overridden	and	regardless	of	the	
actual	(dynamic)	type	of	the	object	
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Object	CreaMon	–	new	

Steps	needed	
–  Call	storage	manager	(malloc	or	similar)	to	get	the	raw	
bits	

–  IniMalize	bytes	to	0	(Java	semanMcs,	not	in	e.g.,	C++)	
–  Store	pointer	to	method	table	in	the	first	8	bytes	of	
the	object	

–  Call	a	constructor	with	“this”	pointer	to	the	new	
object	in	%rdi	and	other	parameters	as	needed	
•  (Not	in	MiniJava	since	we	don’t	have	constructors)	

–  Result	of	new	is	a	pointer	to	the	new	object		
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Object	CreaMon	
•  Source	

	One	one	=	new	One(…);	
•  x86-64	

movq 	$nBytesNeeded,%rdi 	 	#	obj	size	+	8	(include	space	for	vtbl	ptr)	
call 				 	mallocEquiv 	 	 	 	#	addr	of	allocated	bytes	returned	in	%rax	
<zero	allocated	object,	or	use	calloc	instead	of	malloc	to	get	bytes>	
leaq			 	One$$,%rdx 	 	 	 	#	get	method	table	address	
movq 	%rdx,0(%rax) 	 	 	 	#	store	vtbl	ptr	at	beginning	of	object	
movq 	%rax,%rdi 	 	 	 	#	set	up	“this”	for	constructor	
movq 	%rax,offsettemp(%rbp) 	 	#	save	“this”	for	later	(or	maybe	pushq)	
<load	constructor	arguments> 	 	#	arguments	(if	needed)	
call					 	One$One	 	 	 	 	#	call	ctr	if	we	have	one	(no	vtbl	lookup)	
movq 	offsettemp(%rbp),%rax	 	 	#	recover	ptr	to	object	
movq			 	%rax,offsetone(%rbp) 	 	#	store	object	reference	in	variable	one	
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Constructor	

•  Why	don’t	we	need	a	vtable	lookup	to	find	the	
right	constructor	to	call?	

•  Because	at	compile	Mme	we	know	the	actual	
class	(it	says	so	right	aoer	“new”),	so	we	can	
generate	a	call	instrucMon	to	a	known	label	
–  Same	issues	in	super.method(…)	calls	–	at	compile	
Mme	we	know	all	of	the	superclasses	(need	this	to	
construct	the	method	tables),	so	we	know	staMcally	
what	class	“super.method”	belongs	to	
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Method	Calls	

•  Steps	needed	
– Parameter	passing:	just	like	an	ordinary	C	
funcMon,	except	load	a	pointer	to	the	object	in	
%rdi	as	the	first	(“this”)	argument	

– Get	a	pointer	to	the	object’s	method	table	from	
the	first	8	bytes	of	the	object	

–  Jump	indirectly	through	the	method	table	
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Method	Call	
•  Source	

	obj.meth(…);	
•  x86-64	

<load	arguments	in	registers	as	usual>		#	as	needed	
movq 	offsetobj(%rbp),%rdi 	#	first	argument	is	obj	ptr	(“this”)	
movq 	0(%rdi),%rax	 	 	#	load	vtable	address	into	%rax	
call 	 	*offsetmethod(%rax) 	#	call	funcMon	whose	address	is	at 		
	 	 	 	 	 	 	 	#			the	specified	offset	in	the	vtable	*	

	
•  Can	get	same	effect	with:			addq	$offsetmethod,%rax	

	 	 	 	 	 	 	 	call	*(%rax)		
	 	 	 	 	or	with: 	movq	$offsetmethod(%rax),%rax	
	 	 	 	 	 	 	 	call	*%rax	
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RunMme	Type	Checking	
•  We	can	use	the	method	table	for	the	class	as	a	“runMme	

representaMon”	of	the	class 		
–  Each	class	has	one	vtable	at	a	unique	address	

•  The	test	for	“o	instanceof	C”	is	
–  Is	o’s	method	table	pointer	==	&C$$	?	

•  If	so,	result	is	“true”	
–  Recursively,	get	pointer	to	superclass	method	table	from	the	
method	table	and	check	that	

–  Stop	when	you	reach	Object	(or	a	null	pointer,	depending	on	
whether	there	is	a	ulMmate	superclass	of	everything)	
•  If	no	match	by	the	top	of	the	chain,	result	is	“false”	

•  Same	test	as	part	of	check	for	legal	downcast	(e.g.,	how	to	
check	for	ClassCastExcepMon	on	(type)obj	cast)	
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Coming	(&	past)	ALracMons	

•  Simple	code	generaMon	for	the	project	(secMons	
tomorrow,	maybe	wrap	up	on	Friday)	

Then	more	compiler	topics:	
•  Other	IRs	besides	ASTs	
•  Industrial-strength	register	allocaMon,	instrucMon	
selecMon,	and	scheduling	

•  Survey	of	code	opMmizaMon	
•  Dynamic	languages?		JVM?		What	else?	
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